3,032 research outputs found

    A STIS Survey for OVI Absorption Systems at 0.12 < z < 0.5 I.: The Statistical Properties of Ionized Gas

    Full text link
    We have conducted a systematic survey for intervening OVI absorbers in available echelle spectra of 16 QSOs at z_QSO = 0.17-0.57. These spectra were obtained using HST/STIS with the E140M grating. Our search uncovered a total of 27 foreground OVI absorbers with rest-frame absorption equivalent width W_r(1031) > 25mA. Ten of these QSOs exhibit strong OVI absorbers in their vicinity. Our OVI survey does not require the known presence of Lya, and the echelle resolution allows us to identify the OVI absorption doublet based on their common line centroid and known flux ratio. We estimate the total redshift survey path, \Delta z, using a series of Monte-Carlo simulations, and find that \Delta z=1.66, 2.18, and 2.42 for absorbers of strength W_r = 30, 50 and 80mA, respectively, leading to a number density of dN(W > 50mA)/dz = 6.7 +/- 1.7 and dN(W > 30mA)/dz = 10.4 +/- 2.2. In contrast, we also measure dN/dz = 27 +/- 9 for OVI absorbers of W_r > 50mA at |\Delta v|< 5000 kms from the background QSOs. Using the random sample of OVI absorbers with well characterized survey completeness, we estimate a mean cosmological mass density of the OVI gas \Omega(OVI)h = 1.7 +/- 0.3 x 10^-7. In addition, we show that <5% of OVI absorbers originate in underdense regions that do not show a significant trace of HI. Furthermore, we show that the neutral gas column N(HI) associated with these OVI absorbers spans nearly five orders of magnitude, and show moderate correlation with N(OVI). Finally, while the number density of OVI absorbers varies substantially from one sightline to another, it also appears to be inversely correlated with the number density of HI absorbers along individual lines of sight.Comment: 12 pages. ApJ accepte

    The Large, Oxygen-Rich Halos of Star-Forming Galaxies Are A Major Reservoir of Galactic Metals

    Full text link
    The circumgalactic medium (CGM) is fed by galaxy outflows and accretion of intergalactic gas, but its mass, heavy element enrichment, and relation to galaxy properties are poorly constrained by observations. In a survey of the outskirts of 42 galaxies with the Cosmic Origins Spectrograph onboard the Hubble Space Telescope, we detected ubiquitous, large (150 kiloparsec) halos of ionized oxygen surrounding star-forming galaxies, but we find much less ionized oxygen around galaxies with little or no star formation. This ionized CGM contains a substantial mass of heavy elements and gas, perhaps far exceeding the reservoirs of gas in the galaxies themselves. It is a basic component of nearly all star-forming galaxies that is removed or transformed during the quenching of star formation and the transition to passive evolution.Comment: This paper is part of a set of three papers on circumgalactic gas observed with the Cosmic Origins Spectrograph on HST, to be published in Science, together with related papers by Tripp et al. and Lehner & Howk, in the November 18, 2011 edition. This version has not undergone final copyediting. Please see Science online for the final printed versio

    A GLIMPSE into the Nature of Galactic Mid-IR Excesses

    Full text link
    We investigate the nature of the mid-IR excess for 31 intermediate-mass stars that exhibit an 8 micron excess in either the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire or the Mid-Course Space Experiment using high resolution optical spectra to identify stars surrounded by warm circumstellar dust. From these data we determine projected stellar rotational velocities and estimate stellar effective temperatures for the sample. We estimate stellar ages from these temperatures, parallactic distances, and evolutionary models. Using MIPS [24] measurements and stellar parameters we determine the nature of the infrared excess for 19 GLIMPSE stars. We find that 15 stars exhibit Halpha emission and four exhibit Halpha absorption. Assuming that the mid-IR excesses arise in circumstellar disks, we use the Halpha fluxes to model and estimate the relative contributions of dust and free-free emission. Six stars exhibit Halpha fluxes that imply free-free emission can plausibly explain the infrared excess at [24]. These stars are candidate classical Be stars. Nine stars exhibit Halpha emission, but their Halpha fluxes are insufficient to explain the infrared excesses at [24], suggesting the presence of a circumstellar dust component. After the removal of the free-free component in these sources, we determine probable disk dust temperatures of Tdisk~300-800 K and fractional infrared luminosities of L(IR)/L(*)~10^-3. These nine stars may be pre-main-sequence stars with transitional disks undergoing disk clearing. Three of the four sources showing Halpha absorption exhibit circumstellar disk temperatures ~300-400 K, L(IR)/L(*)~10^-3, IR colors K-[24]< 3.3, and are warm debris disk candidates. One of the four Halpha absorption sources has K-[24]> 3.3 implying an optically thick outer disk and is a transition disk candidate.Comment: 17 figures. Accepted for publication in Ap

    The Circumgalactic Medium in Massive Halos

    Full text link
    This chapter presents a review of the current state of knowledge on the cool (T ~ 1e4 K) halo gas content around massive galaxies at z ~ 0.2-2. Over the last decade, significant progress has been made in characterizing the cool circumgalactic gas in massive halos of Mh ~ 1e12-1e14 Msun at intermediate redshifts using absorption spectroscopy. Systematic studies of halo gas around massive galaxies beyond the nearby universe are made possible by large spectroscopic samples of galaxies and quasars in public archives. In addition to accurate and precise constraints for the incidence of cool gas in massive halos, detailed characterizations of gas kinematics and chemical compositions around massive quiescent galaxies at z ~ 0.5 have also been obtained. Combining all available measurements shows that infalling clouds from external sources are likely the primary source of cool gas detected at d >~ 100 kpc from massive quiescent galaxies. The origin of the gas closer in is currently less certain, but SNe Ia driven winds appear to contribute significantly to cool gas found at d < 100 kpc. In contrast, cool gas observed at d <~ 200 kpc from luminous quasars appears to be intimately connected to quasar activities on parsec scales. The observed strong correlation between cool gas covering fraction in quasar host halos and quasar bolometric luminosity remains a puzzle. Combining absorption-line studies with spatially-resolved emission measurements of both gas and galaxies is the necessary next step to address remaining questions.Comment: 29 pages, 7 figures, invited review to appear in "Gas Accretion onto Galaxies", Astrophysics and Space Science Library, eds. A. Fox & R. Dave, to be published by Springe

    Horizontal Branch Stars: The Interplay between Observations and Theory, and Insights into the Formation of the Galaxy

    Full text link
    We review HB stars in a broad astrophysical context, including both variable and non-variable stars. A reassessment of the Oosterhoff dichotomy is presented, which provides unprecedented detail regarding its origin and systematics. We show that the Oosterhoff dichotomy and the distribution of globular clusters (GCs) in the HB morphology-metallicity plane both exclude, with high statistical significance, the possibility that the Galactic halo may have formed from the accretion of dwarf galaxies resembling present-day Milky Way satellites such as Fornax, Sagittarius, and the LMC. A rediscussion of the second-parameter problem is presented. A technique is proposed to estimate the HB types of extragalactic GCs on the basis of integrated far-UV photometry. The relationship between the absolute V magnitude of the HB at the RR Lyrae level and metallicity, as obtained on the basis of trigonometric parallax measurements for the star RR Lyrae, is also revisited, giving a distance modulus to the LMC of (m-M)_0 = 18.44+/-0.11. RR Lyrae period change rates are studied. Finally, the conductive opacities used in evolutionary calculations of low-mass stars are investigated. [ABRIDGED]Comment: 56 pages, 22 figures. Invited review, to appear in Astrophysics and Space Scienc

    Multiphase Gas In Galaxy Halos: The OVI Lyman-limit System toward J1009+0713

    Full text link
    We have serendipitously detected a strong O VI-bearing Lyman limit system at z_abs = 0.3558 toward the QSO J1009+0713 (z_em = 0.456) in our survey of low-redshift galaxy halos with the Hubble Space Telescope's Cosmic Origins Spectrograph. Its rest-frame equivalent width of W_r = 835 +/- 49 mA is the highest for an intervening absorber yet detected in any low-redshift QSO sightline, with absorption spanning 400 km s^-1 in its rest frame. HST/WFC3 images of the galaxy field show that the absorber is associated with two galaxies lying at 14 and 46 kpc from the QSO line of sight. The bulk of the absorbing gas traced by H I resides in two strong, blended component groups that possess a total logN(HI) = 18 - 18.8. The ion ratios and column densities of C, N, O, Mg, Si, S, and Fe, except the O VI, can be accommodated into a simple photoionization model in which diffuse, low-metallicity halo gas is exposed to a photoionizing field from stars in the nearby galaxies that propagates into the halo at 10% efficiency. We constrain the metallicity firmly within the range 0.1 - 1 Zsun, and photoionization modeling indirectly indicates a subsolar metallicity of 0.05 - 0.5 Zsun. The appearance of strong O VI and nine Mg II components and our review of similar systems in the literature support the "interface" picture of high-velocity O VI: the total strength of the O VI shows a positive correlation with the number of detected components in the low-ionization gas, however the total O VI column densities still far exceed the values expected from interface models for the number of detected clouds.Comment: 20 pages, 11 figures, accepted for publication in Ap

    High-velocity clouds as streams of ionized and neutral gas in the halo of the Milky Way

    Full text link
    High-velocity clouds (HVC), fast-moving ionized and neutral gas clouds found at high galactic latitudes, may play an important role in the evolution of the Milky Way. The extent of this role depends sensitively on their distances and total sky covering factor. We search for HVC absorption in HST high resolution ultraviolet spectra of a carefully selected sample of 133 AGN using a range of atomic species in different ionization stages. This allows us to identify neutral, weakly ionized, or highly ionized HVCs over several decades in HI column densities. The sky covering factor of UV-selected HVCs with |v_LSR|>90 km/s is 68%+/-4% for the entire Galactic sky. We show that our survey is essentially complete, i.e., an undetected population of HVCs with extremely low N(H) (HI+HII) is unlikely to be important for the HVC mass budget. We confirm that the predominantly ionized HVCs contain at least as much mass as the traditional HI HVCs and show that large HI HVC complexes have generally ionized envelopes extending far from the HI contours. There are also large regions of the Galactic sky that are covered with ionized high-velocity gas with little HI emission nearby. We show that the covering factors of HVCs with 90<|v_LSR|<170 km/s drawn from the AGN and stellar samples are similar. This confirms that these HVCs are within 5-15 kpc of the sun. The covering factor of these HVCs drops with decreasing vertical height, which is consistent with HVCs being decelerated or disrupted as they fall to the Milky Way disk. The HVCs with |v_LSR|>170 km/s are largely associated with the Magellanic Stream at b<0 and its leading arm at b>0 as well as other large known HI complexes. Therefore there is no evidence in the Local Group that any galaxy shows a population of HVCs extending much farther away than 50 kpc from its host, except possibly for those tracing remnants of galaxy interaction.Comment: Submitted to MNRAS (19 pages, 11 figures). Comments are welcom

    Gas Accretion in Star-Forming Galaxies

    Full text link
    Cold-mode gas accretion onto galaxies is a direct prediction of LCDM simulations and provides galaxies with fuel that allows them to continue to form stars over the lifetime of the Universe. Given its dramatic influence on a galaxy's gas reservoir, gas accretion has to be largely responsible for how galaxies form and evolve. Therefore, given the importance of gas accretion, it is necessary to observe and quantify how these gas flows affect galaxy evolution. However, observational data have yet to conclusively show that gas accretion ubiquitously occurs at any epoch. Directly detecting gas accretion is a challenging endeavor and we now have obtained a significant amount of observational evidence to support it. This chapter reviews the current observational evidence of gas accretion onto star-forming galaxies.Comment: Invited review to appear in Gas Accretion onto Galaxies, Astrophysics and Space Science Library, eds. A. J. Fox & R. Dav\'e, to be published by Springer. This chapter includes 22 pages with 7 Figure

    Steroids during late preterm labor: better later than never

    Get PDF
    Review of: Gyamfi-Bannerman C, Thom EA, Blackwell SC, et al; NICHD Maternal-Fetal Medicine Units Network. Antenatal betamethasone for women at risk for late preterm delivery. N Engl J Med. 2016;374:1311-1320.Steroids during late preterm labor: Better later than never. Steroids--even when administered in the last leg of the late preterm period--still reduce the likelihood of respiratory complications in newborns. Practice changer: Use steroids in women at risk of preterm delivery, even if they are 36 weeks, 6 days-pregnant, because steroids may reduce respiratory complications in the newborn with minimal risk for neonatal or maternal complications

    The minimum scale of grooving on a recently ruptured limestone fault

    Get PDF
    AbstractFaults have grooves that are formed by abrasion and wear during slip. Recent observations indicate that this grooving is only a large‐scale feature, indicating brittle behavior has a length scale limit. The connection between this scale and earthquake behavior remains limited because no examples exist from a proven seismogenic fault. Here, we address this problem and analyze differences in this scale between lithologies to further our understanding of the underlying mechanics. This study uses samples from the Mt. Vettoretto fault collected after the Norcia earthquake of 2016. We imaged fault topography with a white light interferometer and 10 ÎŒm resolution structure from motion and then calculated a Monte Carlo version of root mean square roughness. We found a minimum scale of grooving of ~100 ÎŒm. In comparing this fault to the Corona Heights fault, we find that this minimum grooving scale is consistent with predictions based on material properties
    • 

    corecore