291 research outputs found

    Observation of the Dependence of Scintillation from Nuclear Recoils in Liquid Argon on Drift Field

    Full text link
    We have exposed a dual-phase Liquid Argon Time Projection Chamber (LAr-TPC) to a low energy pulsed narrowband neutron beam, produced at the Notre Dame Institute for Structure and Nuclear Astrophysics to study the scintillation light yield of recoiling nuclei in a LAr-TPC. A liquid scintillation counter was arranged to detect and identify neutrons scattered in the LAr-TPC target and to select the energy of the recoiling nuclei. We report the observation of a significant dependence on drift field of liquid argon scintillation from nuclear recoils of 11 keV. This observation is important because, to date, estimates of the sensitivity of noble liquid TPC dark matter searches are based on the assumption that electric field has only a small effect on the light yield from nuclear recoils.Comment: v3 updated to reflect published version, including a set of plots for 49.9 keV dat

    The action of obestatin in skeletal muscle repair: stem cell expansion, muscle growth, and microenvironment remodeling

    Get PDF
    The development of therapeutic strategies for skeletal muscle diseases, such as physical injuries and myopathies, depends on the knowledge of regulatory signals that control the myogenic process. The obestatin/GPR39 system operates as an autocrine signal in the regulation of skeletal myogenesis. Using a mouse model of skeletal muscle regeneration after injury and several cellular strategies, we explored the potential use of obestatin as a therapeutic agent for the treatment of trauma-induced muscle injuries. Our results evidenced that the overexpression of the preproghrelin, and thus obestatin, and GPR39 in skeletal muscle increased regeneration after muscle injury. More importantly, the intramuscular injection of obestatin significantly enhanced muscle regeneration by simulating satellite stem cell expansion as well as myofiber hypertrophy through a kinase hierarchy. Added to the myogenic action, the obestatin administration resulted in an increased expression of VEGF/VEGFR2 and the consequent microvascularization, with no effect on collagen deposition in skeletal muscle. Furthermore, the potential inhibition of myostatin during obestatin treatment might contribute to its myogenic action improving muscle growth and regeneration. Taken together, our data demonstrate successful improvement of muscle regeneration, indicating obestatin is a potential therapeutic agent for skeletal muscle injury and would benefit other myopathies related to muscle regeneration

    Measurement of Scintillation and Ionization Yield and Scintillation Pulse Shape from Nuclear Recoils in Liquid Argon

    Full text link
    We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0 to 970 V/cm. For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V/cm. We also report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from 83m^{83m}Kr internal conversion electrons is comparable to that from 207^{207}Bi conversion electrons, we obtained the numbers of excitons (NexN_{ex}) and ion pairs (NiN_i) and their ratio (Nex/NiN_{ex}/N_i) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.Comment: v2 to reflect published versio

    Measurement of the Two-Neutrino Double Beta Decay Half-life of 130^{130}Te with the CUORE-0 Experiment

    Get PDF
    We report on the measurement of the two-neutrino double beta decay half-life of 130^{130}Te with the CUORE-0 detector. From an exposure of 33.4 kg\cdoty of TeO2_2, the half-life is determined to be T1/22νT_{1/2}^{2\nu} = [8.2 ±\pm 0.2 (stat.) ±\pm 0.6 (syst.)] ×\times 1020^{20}y. This result is obtained after a detailed reconstruction of the sources responsible for the CUORE-0 counting rate, with a specific study of those contributing to the 130^{130}Te neutrinoless double beta decay region of interest.Comment: Corrected typo in section 9: 3.43E5 Bq/kg should have read 3.43E-5 Bq/k

    Analysis Techniques for the Evaluation of the Neutrinoless Double-Beta Decay Lifetime in 130^{130}Te with CUORE-0

    Full text link
    We describe in detail the methods used to obtain the lower bound on the lifetime of neutrinoless double-beta (0νββ0\nu\beta\beta) decay in 130^{130}Te and the associated limit on the effective Majorana mass of the neutrino using the CUORE-0 detector. CUORE-0 is a bolometric detector array located at the Laboratori Nazionali del Gran Sasso that was designed to validate the background reduction techniques developed for CUORE, a next-generation experiment scheduled to come online in 2016. CUORE-0 is also a competitive 0νββ0\nu\beta\beta decay search in its own right and functions as a platform to further develop the analysis tools and procedures to be used in CUORE. These include data collection, event selection and processing, as well as an evaluation of signal efficiency. In particular, we describe the amplitude evaluation, thermal gain stabilization, energy calibration methods, and the analysis event selection used to create our final 0νββ0\nu\beta\beta decay search spectrum. We define our high level analysis procedures, with emphasis on the new insights gained and challenges encountered. We outline in detail our fitting methods near the hypothesized 0νββ0\nu\beta\beta decay peak and catalog the main sources of systematic uncertainty. Finally, we derive the 0νββ0\nu\beta\beta decay half-life limits previously reported for CUORE-0, T1/20ν>2.7×1024T^{0\nu}_{1/2}>2.7\times10^{24} yr, and in combination with the Cuoricino limit, T1/20ν>4.0×1024T^{0\nu}_{1/2}>4.0\times10^{24} yr.Comment: 18 pages, 18 figures. (Version 3 reflects only minor changes to the text. Few additional details, no major content changes.

    Depleted argon from underground sources

    Get PDF
    Abstract Argon is a powerful scintillator and an excellent medium for detection of ionization. Its high discrimination power against minimum ionization tracks, in favor of selection of nuclear recoils, makes it an attractive medium for direct detection of WIMP dark matter. However, cosmogenic 39 Ar contamination in atmospheric argon limits the size of liquid argon dark matter detectors due to pile-up. The cosmic ray shielding by the earth means that Argon from deep underground is depleted in 39 Ar. In Cortez Colorado a CO 2 well has been discovered to contain approximately 500ppm of argon as a contamination in the CO 2 . In order to produce argon for dark matter detectors we first concentrate the argon locally to 3-5% in an Ar, N 2 , and He mixture, from the CO 2 through chromatographic gas separation. The N 2 and He will be removed by continuous cryogenic distillation in the Cryogenic Distillation Column recently built at Fermilab. In this talk we will discuss the entire extraction and purification process; with emphasis on the recent commissioning and initial performance of the cryogenic distillation column purification
    corecore