44 research outputs found

    Design of the Resistance and Endurance exercise After ChemoTherapy (REACT) study: A randomized controlled trial to evaluate the effectiveness and cost-effectiveness of exercise interventions after chemotherapy on physical fitness and fatigue

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Preliminary studies suggest that physical exercise interventions can improve physical fitness, fatigue and quality of life in cancer patients after completion of chemotherapy. Additional research is needed to rigorously test the effects of exercise programmes among cancer patients and to determine optimal training intensity accordingly. The present paper presents the design of a randomized controlled trial evaluating the effectiveness and cost-effectiveness of a high intensity exercise programme compared to a low-to-moderate intensity exercise programme and a waiting list control group on physical fitness and fatigue as primary outcomes.</p> <p>Methods</p> <p>After baseline measurements, cancer patients who completed chemotherapy are randomly assigned to either a 12-week high intensity exercise programme or a low-to-moderate intensity exercise programme. Next, patients from both groups are randomly assigned to immediate training or a waiting list (i.e. waiting list control group). After 12 weeks, patients of the waiting list control group start with the exercise programme they have been allocated to.</p> <p>Both interventions consist of equal bouts of resistance and endurance interval exercises with the same frequency and duration, but differ in training intensity. Additionally, patients of both exercise programmes are counselled to improve compliance and achieve and maintain an active lifestyle, tailored to their individual preferences and capabilities.</p> <p>Measurements will be performed at baseline (t = 0), 12 weeks after randomization (t = 1), and 64 weeks after randomization (t = 2). The primary outcome measures are cardiorespiratory fitness and muscle strength assessed by means of objective performance indicators, and self-reported fatigue. Secondary outcome measures include health-related quality of life, self-reported physical activity, daily functioning, body composition, mood and sleep disturbances, and return to work. In addition, compliance and satisfaction with the interventions will be evaluated. Potential moderation by pre- and post-illness lifestyle, health and exercise-related attitudes, beliefs and motivation will also be assessed. Finally, the cost-effectiveness of both exercise interventions will be evaluated.</p> <p>Discussion</p> <p>This randomized controlled trial will be a rigorous test of effects of exercise programmes for cancer patients after chemotherapy, aiming to contribute to evidence-based practice in cancer rehabilitation programmes.</p> <p>Trial registration</p> <p>This study is registered at the Netherlands Trial Register (NTR2153)</p

    Effects and moderators of exercise on quality of life and physical function in patients with cancer:An individual patient data meta-analysis of 34 RCTs

    Get PDF
    This individual patient data meta-analysis aimed to evaluate the effects of exercise on quality of life (QoL) and physical function (PF) in patients with cancer, and to identify moderator effects of demographic (age, sex, marital status, education), clinical (body mass index, cancer type, presence of metastasis), intervention-related (intervention timing, delivery mode and duration, and type of control group), and exercise-related (exercise frequency, intensity, type, time) characteristics. Relevant published and unpublished studies were identified in September 2012 via PubMed, EMBASE, PsycINFO, and CINAHL, reference checking and personal communications. Principle investigators of all 69 eligible trials were requested to share IPD from their study. IPD from 34 randomised controlled trials (n=4,519 patients) that evaluated the effects of exercise compared to a usual care, wait-list or attention control group on QoL and PF in adult patients with cancer were retrieved and pooled. Linear mixed-effect models were used to evaluate the effects of the exercise on post-intervention outcome values (z-score) adjusting for baseline values. Moderator effects were studies by testing interactions. Exercise significantly improved QoL (β=0.15, 95%CI=0.10;0.20) and PF (β=0.18,95%CI=0.13;0.23). The effects were not moderated by demographic, clinical or exercise characteristics. Effects on QoL (βdifference_in_effect=0.13, 95%CI=0.03;0.22) and PF (βdifference_in_effect=0.10, 95%CI=0.01;0.20) were significantly larger for supervised than unsupervised interventions. In conclusion, exercise, and particularly supervised exercise, effectively improves QoL and PF in patients with cancer with different demographic and clinical characteristics during and following treatment. Although effect sizes are small, there is consistent empirical evidence to support implementation of exercise as part of cancer care

    Long-term effectiveness and cost-effectiveness of high versus low-to-moderate intensity resistance and endurance exercise interventions among cancer survivors

    No full text
    Purpose: This study aimed to evaluate the long-term effectiveness and cost-effectiveness of high intensity (HI) versus low-to-moderate intensity (LMI) exercise on physical fitness, fatigue, and health-related quality of life (HRQoL) in cancer survivors. Methods: Two hundred seventy-seven cancer survivors participated in the Resistance and Endurance exercise After ChemoTherapy (REACT) study and were randomized to 12 weeks of HI (n = 139) or LMI exercise (n = 138) that had similar exercise types, durations, and frequencies, but different intensities. Measurements were performed at baseline (4–6 weeks after primary treatment), and 12 (i.e., short term) and 64 (i.e., longer term) weeks later. Outcomes included cardiorespiratory fitness, muscle strength, self-reported fatigue, HRQoL, quality-adjusted life years (QALYs) and societal costs. Linear mixed models were conducted to study (a) differences in effects between HI and LMI exercise at longer term, (b) within-group changes from short term to longer term, and (c) the cost-effectiveness from a societal perspective. Results: At longer term, intervention effects on role (β = 5.9, 95% CI = 0.5; 11.3) and social functioning (β = 5.7, 95%CI = 1.7; 9.6) were larger for HI compared to those for LMI exercise. No significant between-group differences were found for physical fitness and fatigue. Intervention-induced improvements in cardiorespiratory fitness and HRQoL were maintained between weeks 12 and 64, but not for fatigue. From a societal perspective, the probability that HI was cost-effective compared to LMI exercise was 0.91 at 20,000€/QALY and 0.95 at 52,000€/QALY gained, mostly due to significant lower healthcare costs in HI exrcise. Conclusions: At longer term, we found larger intervention effects on role and social functioning for HI than for LMI exercise. Furthermore, HI exercise was cost-effective with regard to QALYs compared to LMI exercise. Trial registration: This study is registered at the Netherlands Trial Register [NTR2153 [http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=2153]] on the 5th of January 2010. Implications for Cancer Survivors: Exercise is recommended to be part of standard cancer care, and HI may be preferred over LMI exercise

    Which cancer survivors are at risk for a physically inactive and sedentary lifestyle? Results from pooled accelerometer data of 1447 cancer survivors

    Get PDF
    Background: Physical activity has beneficial effects on the health of cancer survivors. We aimed to investigate accelerometer-assessed physical activity and sedentary time in cancer survivors, and describe activity profiles. Additionally, we identify demographic and clinical correlates of physical activity, sedentary time and activity profiles. Methods: Accelerometer, questionnaire and clinical data from eight studies conducted in four countries (n = 1447) were pooled. We calculated sedentary time and time spent in physical activity at various intensities using Freedson cut-points. We used latent profile analysis to identify activity profiles, and multilevel linear regression analyses to identify demographic and clinical variables associated with accelerometer-assessed moderate to vigorous physical activity (MVPA), sedentary time, the highly active and highly sedentary profile, adjusting for confounders identified using a directed acyclic graph. Results: Participants spent on average 26 min (3%) in MVPA and 568 min (66%) sedentary per day. We identified six activity profiles. Older participants, smokers and participants with obesity had significantly lower MVPA and higher sedentary time. Furthermore, men had significantly higher MVPA and sedentary time than women and participants who reported less fatigue had higher MVPA time. The highly active profile included survivors with high education level and normal body mass index. Haematological cancer survivors were less likely to have a highly active profile compared to breast cancer survivors. The highly sedentary profile included older participants, males, participants who were not married, obese, smokers, and those < 12 months after diagnosis. Conclusions: Cancer survivors engage in few minutes of MVPA and spend a large proportion of their day sedentary. Correlates of MVPA, sedentary time and activity profiles can be used to identify cancer survivors at risk for a sedentary and inactive lifestyle
    corecore