223 research outputs found

    Three-dimensional resistivity tomography of Vulcan's forge, Vulcano Island, southern Italy

    Get PDF
    International audience9,525 DC resistivity measurements were taken along 9 profiles crossing the volcanic edifice of La Fossa di Vulcano (the forge of God Vulcan in ancient Roman mythology), Vulcano Island (Italy) using a total of 958 electrode locations. This unique data set has been inverted in 3D by minimizing the L2 norm of the data misfit using a Gauss-Newton approach. The true 3D inversion was performed using parallel processing on an unstructured tetrahedral mesh containing 75,549 finite-element nodes and 398,208 elements to accurately model the topography of the volcanic edifice. The 3D tomogram shows a very conductive body (>0.1 S/m) comprised inside the Pietre Cotte crater with conductive volumes that are consistent with the position of temperature and CO2 anomalies at the ground surface. This conductive body is interpreted as the main hydrothermal body. It is overlaid by a resistive and cold cap in the bottom of the crater. The position of the conductive body is consistent with the deformation source responsible for the observed 1990-1996 deflation of the volcano associated with a decrease of hydrothermal activity

    Self-Potential Signals Generated by the Corrosion of Buried Metallic Objects with Application to Contaminant Plumes

    Get PDF
    Large-amplitude (\u3e100 mV) negative electric (self)-potential anomalies are often observed in the vicinity of buried metallic objects and ore bodies or over groundwater plumes associated with organic contaminants. To explain the physical and chemical mechanisms that generate such electrical signals, a controlled laboratory experiment was carried out involving two metallic cylinders buried with vertical and horizontal orientations and centered through and in the capillary fringe within a sandbox. The 2D and 3D self-potential (SP) data were collected at several time steps along with collocated pH and redox potential measurements. Large dipolar SP and redox potential anomalies developed in association with the progressive corrosion of the vertical pipe, although no anomalies were observed in the vicinity of the horizontal pipe. This discrepancy was due to the orientation of the pipes with the vertical pipe subjected to a significantly larger EH gradient. Accounting for the electrical conductivity distribution, the SP data were inverted to recover the source current density vector field using a deterministic least-squares 4D (time-lapse) finite-element modeling approach. These results were then used to retrieve the 3D distribution of the redox potential along the vertical metallic cylinder. The results of the inversion were found to be in excellent agreement with the measured distribution of the redox potential. This experiment indicated that passively recorded electrical signals can be used to nonintrusively monitor corrosion processes. In addition, vertical electrical potential profiles measured through a mature hydrocarbon contaminated site were consistent with the sandbox observations, lending support to the geobattery model over organic contaminant plumes

    Effect of volcanic dykes on coastal groundwater flow and saltwater intrusion : a field-scale multiphysics approach and parameter evaluation

    Get PDF
    Acknowledgments This research was primarily based on research grant‐aided by the Irish Department of Communications, Energy and Natural Resources under the National Geoscience Programme 2007–2013. It also benefited from complementary funding from the Scottish Alliance for Geoscience, Environment and Society (SAGES). We acknowledge the contribution in data acquisition of the MSc students in Environmental Engineering at Queen's University Belfast, the landowner for access to the inland fields and the Department of Geography, Archaeology and Paleoecology at QUB for provision of the tidal model of Belfast Lough. The data used are listed in the references, tables, and figures and are available from the corresponding author upon demand. We acknowledge the constructive comments by the Associate Editor and three reviewers, which helped in improving the final manuscript.Peer reviewedPublisher PD

    Apoptosis of human melanoma cells induced by inhibition of B-RAFV600E involves preferential splicing of bimS

    Get PDF
    Bim is known to be critical in killing of melanoma cells by inhibition of the RAF/MEK/ERK pathway. However, the potential role of the most potent apoptosis-inducing isoform of Bim, BimS, remains largely unappreciated. Here, we show that inhibition of the mutant B-RAFV600E triggers preferential splicing to produce BimS, which is particularly important in induction of apoptosis in B-RAFV600E melanoma cells. Although the specific B-RAFV600E inhibitor PLX4720 upregulates all three major isoforms of Bim, BimEL, BimL, and BimS, at the protein and mRNA levels in B-RAFV600E melanoma cells, the increase in the ratios of BimS mRNA to BimEL and BimL mRNA indicates that it favours BimS splicing. Consistently, enforced expression of B-RAFV600E in wild-type B-RAF melanoma cells and melanocytes inhibits BimS expression. The splicing factor SRp55 appears necessary for the increase in BimS splicing, as SRp55 is upregulated, and its inhibition by small interfering RNA blocks induction of BimS and apoptosis induced by PLX4720. The PLX4720-induced, SRp55-mediated increase in BimS splicing is also mirrored in freshly isolated B-RAFV600E melanoma cells. These results identify a key mechanism for induction of apoptosis by PLX4720, and are instructive for sensitizing melanoma cells to B-RAFV600E inhibitors

    ESAFORM 2021 cup drawing benchmark of an Al alloy: Critical follow up analysis of its potentials

    Full text link
    peer reviewedThe 1st ESAFORM Benchmark, called EXACT [1], enabled an in-depth study of the factors that contribute to the accuracy of predictions and efficiency of finite element (FE) simulations of deep drawing of a cup from AA 6016-T4 sheet through the joint work of 11 teams. FE analyses were conducted with elasto-plastic models or crystal plasticity approaches using commercial or academic FE codes. This paper reminds the content of EXACT benchmark and gives new results that highlight the importance of the tool stiffness and various contact conditions to predict the ironing forces and the thickness distribution along the cup wall. The use of the Benchmark experimental data and virtual tests performed with DAMASK crystal plasticity code to identify and validate a two-surface kinematic hardening model based on Yoshida and Uemori approach is also discussed.ESAFORM Benchmark grant 202

    Changes in Gene Expression Associated with Reproductive Maturation in Wild Female Baboons

    Get PDF
    Changes in gene expression during development play an important role in shaping morphological and behavioral differences, including between humans and nonhuman primates. Although many of the most striking developmental changes occur during early development, reproductive maturation represents another critical window in primate life history. However, this process is difficult to study at the molecular level in natural primate populations. Here, we took advantage of ovarian samples made available through an unusual episode of human–wildlife conflict to identify genes that are important in this process. Specifically, we used RNA sequencing (RNA-Seq) to compare genome-wide gene expression patterns in the ovarian tissue of juvenile and adult female baboons from Amboseli National Park, Kenya. We combined this information with prior evidence of selection occurring on two primate lineages (human and chimpanzee). We found that in cases in which genes were both differentially expressed over the course of ovarian maturation and also linked to lineage-specific selection this selective signature was much more likely to occur in regulatory regions than in coding regions. These results suggest that adaptive change in the development of the primate ovary may be largely driven at the mechanistic level by selection on gene regulation, potentially in relationship to the physiology or timing of female reproductive maturation

    A Pre-Landing Assessment of Regolith Properties at the InSight Landing Site

    Get PDF
    This article discusses relevant physical properties of the regolith at the Mars InSight landing site as understood prior to landing of the spacecraft. InSight will land in the northern lowland plains of Mars, close to the equator, where the regolith is estimated to be ≥3--5 m thick. These investigations of physical properties have relied on data collected from Mars orbital measurements, previously collected lander and rover data, results of studies of data and samples from Apollo lunar missions, laboratory measurements on regolith simulants, and theoretical studies. The investigations include changes in properties with depth and temperature. Mechanical properties investigated include density, grain-size distribution, cohesion, and angle of internal friction. Thermophysical properties include thermal inertia, surface emissivity and albedo, thermal conductivity and diffusivity, and specific heat. Regolith elastic properties not only include parameters that control seismic wave velocities in the immediate vicinity of the Insight lander but also coupling of the lander and other potential noise sources to the InSight broadband seismometer. The related properties include Poisson’s ratio, P- and S-wave velocities, Young’s modulus, and seismic attenuation. Finally, mass diffusivity was investigated to estimate gas movements in the regolith driven by atmospheric pressure changes. Physical properties presented here are all to some degree speculative. However, they form a basis for interpretation of the early data to be returned from the InSight mission.Additional co-authors: Nick Teanby and Sharon Keda
    corecore