141 research outputs found

    Suivi technique, analytique et microbiologique de la « bili bili »,bière traditionnelle tchadienne

    Get PDF
    Technical, analytical and microbiological follow-up of the "bili bili", Chadian traditional beerTo improve our knowledge of the artisanal process of manufacture of the "bili bili", carried out some measurements (operation time, temperature, pH, concentrations and we mass of dry matter, total carbohydrates, fermentable carbohydrates, lactic acid, ethanol,number of total bacteria, lactic bacteria and yeast) at different stages. The influence of operating conditions on the artisanal process of malting, mixing, acidification and fermentation were analyzed. The results obtained made it possible to identify and characterize the main physico-chemical and biological changes during the production of this beer. Moreover, as the European beers the "bili bili" results the same  technological process but showed a double lactic fermentation. These results also made it possible to suggest improvements of the production procedure that could economize the energy significantly

    CYGD: the Comprehensive Yeast Genome Database

    Get PDF
    The Comprehensive Yeast Genome Database (CYGD) compiles a comprehensive data resource for information on the cellular functions of the yeast Saccharomyces cerevisiae and related species, chosen as the best understood model organism for eukaryotes. The database serves as a common resource generated by a European consortium, going beyond the provision of sequence information and functional annotations on individual genes and proteins. In addition, it provides information on the physical and functional interactions among proteins as well as other genetic elements. These cellular networks include metabolic and regulatory pathways, signal transduction and transport processes as well as co-regulated gene clusters. As more yeast genomes are published, their annotation becomes greatly facilitated using S.cerevisiae as a reference. CYGD provides a way of exploring related genomes with the aid of the S.cerevisiae genome as a backbone and SIMAP, the Similarity Matrix of Proteins. The comprehensive resource is available under http://mips.gsf.de/genre/proj/yeast/

    CandidaDB: a genome database for Candida albicans pathogenomics

    Get PDF
    CandidaDB is a database dedicated to the genome of the most prevalent systemic fungal pathogen of humans, Candida albicans. CandidaDB is based on an annotation of the Stanford Genome Technology Center C.albicans genome sequence data by the European Galar Fungail Consortium. CandidaDB Release 2.0 (June 2004) contains information pertaining to Assembly 19 of the genome of C.albicans strain SC5314. The current release contains 6244 annotated entries corresponding to 130 tRNA genes and 5917 protein-coding genes. For these, it provides tentative functional assignments along with numerous pre-run analyses that can assist the researcher in the evaluation of gene function for the purpose of specific or large-scale analysis. CandidaDB is based on GenoList, a generic relational data schema and a World Wide Web interface that has been adapted to the handling of eukaryotic genomes. The interface allows users to browse easily through genome data and retrieve information. CandidaDB also provides more elaborate tools, such as pattern searching, that are tightly connected to the overall browsing system. As the C.albicans genome is diploid and still incompletely assembled, CandidaDB provides tools to browse the genome by individual supercontigs and to examine information about allelic sequences obtained from complementary contigs. CandidaDB is accessible at http://genolist.pasteur.fr/CandidaDB

    CandidaDB: A genome database for Candida albicans pathogenomics

    Get PDF
    CandidaDB is a database dedicated to the genome of the most prevalent systemic fungal pathogen of humans, Candida albicans. CandidaDB is based on an annotation of the Stanford Genome Technology Center C.albicans genome sequence data by the European Galar Fungail Consortium. CandidaDB Release 2.0 (June 2004) contains information pertaining to Assembly 19 of the genome of C.albicans strain SC5314. The current release contains 6244 annotated entries corresponding to 130 tRNA genes and 5917 protein-coding genes. For these, it provides tentative functional assignments along with numerous pre-run analyses that can assist the researcher in the evaluation of gene function for the purpose of specific or large-scale analysis. CandidaDB is based on GenoList, a generic relational data schema and a World Wide Web interface that has been adapted to the handling of eukaryotic genomes. The interface allows users to browse easily through genome data and retrieve information. CandidaDB also provides more elaborate tools, such as pattern searching, that are tightly connected to the overall browsing system. As the C.albicans genome is diploid and still incompletely assembled, CandidaDB provides tools to browse the genome by individual supercontigs and to examine information about allelic sequences obtained from complementary contigs. CandidaDB is accessible at http://genolist.pasteur.fr/CandidaDB.Sequence data from C.albicans were obtained from the Stanford Genome Technology Center (http://www.sequence. stanford.edu/group/candida). Sequencing of C.albicans was accomplished with the support of the NIDR and the Burroughs Wellcome Fund. This work was supported by grants from the European Commission (QLK2-2000-00795; MCRTN-CT-2003-504148; ‘Galar Fungail Consortium’) to A.J.P.B., C.E., A.D., J.E., C.G., B.H., F.M.K., J.P.M. and R.S. and the Ministere de la Recherche et de la Technologie (PRFMMIP ‘Re´seau Infections Fongiques’) to C.E. and C.G. F.T. was supported by the Institut Pasteur Strategic Horizontal Program on Anopheles gambiae. N.M. was supported by a fellowship of the Junta de Castilla y Leon and by grants DGCYT (PM-98-0317 and BIO 2002-02124) to A.D. R.S. was supported in part by grants from the Spanish Ministerio de Ciencia y Tecnologia (BMC2003- 01023) and Agencia Valenciana de Ciencia i Tecnologia de la Generalitat Valenciana (Grupos 03/187)

    Alternative Splicing Regulates Targeting of Malate Dehydrogenase in Yarrowia lipolytica

    Get PDF
    Alternative pre-mRNA splicing is a major mechanism contributing to the proteome complexity of most eukaryotes, especially mammals. In less complex organisms, such as yeasts, the numbers of genes that contain introns are low and cases of alternative splicing (AS) with functional implications are rare. We report the first case of AS with functional consequences in the yeast Yarrowia lipolytica. The splicing pattern was found to govern the cellular localization of malate dehydrogenase, an enzyme of the central carbon metabolism. This ubiquitous enzyme is involved in the tricarboxylic acid cycle in mitochondria and in the glyoxylate cycle, which takes place in peroxisomes and the cytosol. In Saccharomyces cerevisiae, three genes encode three compartment-specific enzymes. In contrast, only two genes exist in Y. lipolytica. One gene (YlMDH1, YALI0D16753g) encodes a predicted mitochondrial protein, whereas the second gene (YlMDH2, YALI0E14190g) generates the cytosolic and peroxisomal forms through the alternative use of two 3′-splice sites in the second intron. Both splicing variants were detected in cDNA libraries obtained from cells grown under different conditions. Mutants expressing the individual YlMdh2p isoforms tagged with fluorescent proteins confirmed that they localized to either the cytosolic or the peroxisomal compartment

    Genomic Transition to Pathogenicity in Chytrid Fungi

    Get PDF
    Understanding the molecular mechanisms of pathogen emergence is central to mitigating the impacts of novel infectious disease agents. The chytrid fungus Batrachochytrium dendrobatidis (Bd) is an emerging pathogen of amphibians that has been implicated in amphibian declines worldwide. Bd is the only member of its clade known to attack vertebrates. However, little is known about the molecular determinants of - or evolutionary transition to - pathogenicity in Bd. Here we sequence the genome of Bd's closest known relative - a non-pathogenic chytrid Homolaphlyctis polyrhiza (Hp). We first describe the genome of Hp, which is comparable to other chytrid genomes in size and number of predicted proteins. We then compare the genomes of Hp, Bd, and 19 additional fungal genomes to identify unique or recent evolutionary elements in the Bd genome. We identified 1,974 Bd-specific genes, a gene set that is enriched for protease, lipase, and microbial effector Gene Ontology terms. We describe significant lineage-specific expansions in three Bd protease families (metallo-, serine-type, and aspartyl proteases). We show that these protease gene family expansions occurred after the divergence of Bd and Hp from their common ancestor and thus are localized to the Bd branch. Finally, we demonstrate that the timing of the protease gene family expansions predates the emergence of Bd as a globally important amphibian pathogen

    Disruption of Yarrowia lipolytica TPS1 Gene Encoding Trehalose-6-P Synthase Does Not Affect Growth in Glucose but Impairs Growth at High Temperature

    Get PDF
    We have cloned the Yarrowia lipolytica TPS1 gene encoding trehalose-6-P synthase by complementation of the lack of growth in glucose of a Saccharomyces cerevisiae tps1 mutant. Disruption of YlTPS1 could only be achieved with a cassette placed in the 3′half of its coding region due to the overlap of its sequence with the promoter of the essential gene YlTFC1. The Yltps1 mutant grew in glucose although the Y. lipolytica hexokinase is extremely sensitive to inhibition by trehalose-6-P. The presence of a glucokinase, insensitive to trehalose-6-P, that constitutes about 80% of the glucose phosphorylating capacity during growth in glucose may account for the growth phenotype. Trehalose content was below 1 nmol/mg dry weight in Y. lipolytica, but it increased in strains expressing YlTPS1 under the control of the YlTEF1promoter or with a disruption of YALI0D15598 encoding a putative trehalase. mRNA levels of YlTPS1 were low and did not respond to thermal stresses, but that of YlTPS2 (YALI0D14476) and YlTPS3 (YALI0E31086) increased 4 and 6 times, repectively, by heat treatment. Disruption of YlTPS1 drastically slowed growth at 35°C. Homozygous Yltps1 diploids showed a decreased sporulation frequency that was ascribed to the low level of YALI0D20966 mRNA an homolog of the S. cerevisiae MCK1 which encodes a protein kinase that activates early meiotic gene expression

    Analysis of the genome and transcriptome of Cryptococcus neoformans var. grubii reveals complex RNA expression and microevolution leading to virulence attenuation.

    Get PDF
    Cryptococcus neoformans is a pathogenic basidiomycetous yeast responsible for more than 600,000 deaths each year. It occurs as two serotypes (A and D) representing two varieties (i.e. grubii and neoformans, respectively). Here, we sequenced the genome and performed an RNA-Seq-based analysis of the C. neoformans var. grubii transcriptome structure. We determined the chromosomal locations, analyzed the sequence/structural features of the centromeres, and identified origins of replication. The genome was annotated based on automated and manual curation. More than 40,000 introns populating more than 99% of the expressed genes were identified. Although most of these introns are located in the coding DNA sequences (CDS), over 2,000 introns in the untranslated regions (UTRs) were also identified. Poly(A)-containing reads were employed to locate the polyadenylation sites of more than 80% of the genes. Examination of the sequences around these sites revealed a new poly(A)-site-associated motif (AUGHAH). In addition, 1,197 miscRNAs were identified. These miscRNAs can be spliced and/or polyadenylated, but do not appear to have obvious coding capacities. Finally, this genome sequence enabled a comparative analysis of strain H99 variants obtained after laboratory passage. The spectrum of mutations identified provides insights into the genetics underlying the micro-evolution of a laboratory strain, and identifies mutations involved in stress responses, mating efficiency, and virulence

    The Complete Genome of Propionibacterium freudenreichii CIRM-BIA1T, a Hardy Actinobacterium with Food and Probiotic Applications

    Get PDF
    Background: Propionibacterium freudenreichii is essential as a ripening culture in Swiss-type cheeses and is also considered for its probiotic use [1]. This species exhibits slow growth, low nutritional requirements, and hardiness in many habitats. It belongs to the taxonomic group of dairy propionibacteria, in contrast to the cutaneous species P. acnes. The genome of the type strain, P. freudenreichii subsp. shermanii CIRM-BIA1 (CIP 103027T), was sequenced with an 11-fold coverage. Methodology/Principal Findings: The circular chromosome of 2.7 Mb of the CIRM-BIA1 strain has a GC-content of 67% and contains 22 different insertion sequences (3.5% of the genome in base pairs). Using a proteomic approach, 490 of the 2439 predicted proteins were confirmed. The annotation revealed the genetic basis for the hardiness of P. freudenreichii, as the bacterium possesses a complete enzymatic arsenal for de novo biosynthesis of aminoacids and vitamins (except panthotenate and biotin) as well as sequences involved in metabolism of various carbon sources, immunity against phages, duplicated chaperone genes and, interestingly, genes involved in the management of polyphosphate, glycogen and trehalose storage. The complete biosynthesis pathway for a bifidogenic compound is described, as well as a high number of surface proteins involved in interactions with the host and present in other probiotic bacteria. By comparative genomics, no pathogenicity factors found in P. acnes or in other pathogenic microbial species were identified in P. freudenreichii, which is consistent with the Generally Recognized As Safe and Qualified Presumption of Safety status of P. freudenreichii. Various pathways for formation of cheese flavor compounds were identified: the Wood-Werkman cycle for propionic acid formation, amino acid degradation pathways resulting in the formation of volatile branched chain fatty acids, and esterases involved in the formation of free fatty acids and esters. Conclusions/Significance: With the exception of its ability to degrade lactose, P. freudenreichii seems poorly adapted to dairy niches. This genome annotation opens up new prospects for the understanding of the P. freudenreichii probiotic activity
    corecore