406 research outputs found

    Control of defect-mediated tunneling barrier heights in ultrathin MgO films

    Full text link
    The impact of oxygen vacancies on local tunneling properties across rf-sputtered MgO thin films was investigated by optical absorption spectroscopy and conducting atomic force microscopy. Adding O2_2 to the Ar plasma during MgO growth alters the oxygen defect populations, leading to improved local tunneling characteristics such as a lower density of current hotspots and a lower tunnel current amplitude. We discuss a defect-based potential landscape across ultrathin MgO barriers.Comment: 4 pages, 4 figure

    Absorption Spectral Slopes and Slope Ratios as Indicators of Molecular Weight, Source, and Photobleaching of Chromophoric Dissolved Organic Matter

    Get PDF
    A new approach for parameterizing dissolved organic matter ( DOM) ultraviolet-visible absorption spectra is presented. Two distinct spectral slope regions ( 275-295 nm and 350-400 nm) within log-transformed absorption spectra were used to compare DOM from contrasting water types, ranging from wetlands (Great Dismal Swamp and Suwannee River) to photobleached oceanic water ( Atlantic Ocean). On the basis of DOM size-fractionation studies ( ultrafiltration and gel filtration chromatography), the slope of the 275-295- nm region and the ratio of these slopes (SR; 275-295- nm slope : 350-400- nm slope) were related to DOM molecular weight ( MW) and to photochemically induced shifts in MW. Dark aerobic microbial alteration of chromophoric DOM ( CDOM) resulted in spectral slope changes opposite of those caused by photochemistry. Along an axial transect in the Delaware Estuary, large variations in SR were measured, probably due to mixing, photodegradation, and microbial alteration of CDOM as terrestrially derived DOM transited through the estuary. Further, SR varied by over a factor of 13 between DOM-rich wetland waters and Sargasso Sea surface waters. Currently, there is no consensus on a wavelength range for log-transformed absorption spectra. We propose that the 275-295- nm slope be routinely reported in future DOM studies, as it can be measured with high precision, it facilitates comparison among dissimilar water types including CDOM-rich wetland and CDOM-poor marine waters, and it appears to be a good proxy for DOM MW. © 2008, by the American Society of Limnology and Oceanography, Inc

    Variability of atmospheric dimethylsulphide over the southern Indian Ocean due to changes in ultraviolet radiation

    Get PDF
    Dimethylsulphide (DMS) is a climatically important component of global biogeochemical cycles, through its role in the sulphur cycle. Changes in ultraviolet radiation (UV) exhibit both positive and negative forcings on the dynamics of production and turnover of DMS and its precursor dimethylsulphoniopropionate (DMSP). In this study we investigate the net forcing of UV on atmospheric DMS. The work is based on a 10-year record of observed DMS at Amsterdam Island in the southern Indian Ocean, and satellite-based retrievals of surface UV and photosynthetically active radiation (PAR). The results show an inverse relationship between UV radiation and atmospheric DMS associated with extreme changes (defined as the greatest 5%) in daily UV, independent of changes in wind speed, sea surface temperature, and PAR

    Seasonal ITCZ migration dynamically controls the location of the (sub)tropical Atlantic biogeochemical divide

    Get PDF
    Inorganic nitrogen depletion restricts productivity in much of the low-latitude oceans, generating a selective advantage for diazotrophic organisms capable of fixing atmospheric dinitrogen (N2). However, the abundance and activity of diazotrophs can in turn be controlled by the availability of other potentially limiting nutrients, including phosphorus (P) and iron (Fe). Here we present high-resolution data (∼0.3°) for dissolved iron, aluminum, and inorganic phosphorus that confirm the existence of a sharp north–south biogeochemical boundary in the surface nutrient concentrations of the (sub)tropical Atlantic Ocean. Combining satellite-based precipitation data with results from a previous study, we here demonstrate that wet deposition in the region of the intertropical convergence zone acts as the major dissolved iron source to surface waters. Moreover, corresponding observations of N2 fixation and the distribution of diazotrophic Trichodesmium spp. indicate that movement in the region of elevated dissolved iron as a result of the seasonal migration of the intertropical convergence zone drives a shift in the latitudinal distribution of diazotrophy and corresponding dissolved inorganic phosphorus depletion. These conclusions are consistent with the results of an idealized numerical model of the system. The boundary between the distinct biogeochemical systems of the (sub)tropical Atlantic thus appears to be defined by the diazotrophic response to spatial–temporal variability in external Fe inputs. Consequently, in addition to demonstrating a unique seasonal cycle forced by atmospheric nutrient inputs, we suggest that the underlying biogeochemical mechanisms would likely characterize the response of oligotrophic systems to altered environmental forcing over longer timescales

    Depth-resolved photochemical production of hydrogen peroxide in the global ocean using remotely sensed ocean color

    Get PDF
    Hydrogen peroxide (H2O2) is an important reactive oxygen species (ROS) in natural waters, affecting water quality via participation in metal redox reactions and causing oxidative stress for marine ecosystems. While attempts have been made to better understand H2O2 dynamics in the global ocean, the relative importance of various H2O2 sources and losses remains uncertain. Our model improves previous estimates of photochemical H2O2 production rates by using remotely sensed ocean color to characterize the ultraviolet (UV) radiation field in surface water along with quantitative chemical data for the photochemical efficiency of H2O2 formation. Wavelength- and temperature-dependent efficiency (i.e., apparent quantum yield, AQY) spectra previously reported for a variety of seawater sources, including coastal and oligotrophic stations in Antarctica, the Pacific Ocean at Station ALOHA, the Gulf of Mexico, and several sites along the eastern coast of the United States were compiled to obtain a “marine-average” AQY spectrum. To evaluate our predictions of H2O2 photoproduction in surface waters using this single AQY spectrum, we compared modeled rates to new measured rates from Gulf Stream, coastal, and nearshore river-outflow stations in the South Atlantic Bight, GA, United States; obtaining comparative differences of 33% or less. In our global model, the “marine-average” AQY spectrum was used with modeled solar irradiance, together with satellite-derived surface seawater temperature and UV optical properties, including diffuse attenuation coefficients and dissolved organic matter absorption coefficients estimated with remote sensing-based algorithms. The final product of the model, a monthly climatology of depth-resolved H2O2 photoproduction rates in the surface mixed layer, is reported for the first time and provides an integrated global estimate of ∼21.1 Tmol yr−1 for photochemical H2O2 production. This work has important implications for photo-redox reactions in seawater and improves our understanding of the role of solar irradiation on ROS cycling and the overall oxidation state in the oceans

    Characterization of the cytokinin-responsive transcriptome in rice

    Get PDF
    Abstract Background Cytokinin activates transcriptional cascades important for development and the responses to biotic and abiotic stresses. Most of what is known regarding cytokinin-regulated gene expression comes from studies of the dicotyledonous plant Arabidopsis thaliana. To expand the understanding of the cytokinin-regulated transcriptome, we employed RNA-Seq to analyze gene expression in response to cytokinin in roots and shoots of the monocotyledonous plant rice. Results We identified over 4,600 and approximately 2,400 genes differentially expressed in response to cytokinin in roots and shoots respectively. There were some similarities in the sets of cytokinin-regulated genes identified in rice and Arabidopsis, including an up-regulation of genes that act to reduce cytokinin function. Consistent with this, we found that the preferred DNA-binding motif of a rice type-B response regulator is similar to those from Arabidopsis. Analysis of the genes regulated by cytokinin in rice revealed a large number of transcription factors, receptor-like kinases, and genes involved in protein degradation, as well as genes involved in development and the response to biotic stress. Consistent with the over-representation of genes involved in biotic stress, there is a substantial overlap in the genes regulated by cytokinin and those differentially expressed in response to pathogen infection, suggesting that cytokinin plays an integral role in the transcriptional response to pathogens in rice, including the induction of a large number of WRKY transcription factors. Conclusions These results begin to unravel the complex gene regulation after cytokinin perception in a crop of agricultural importance and provide insight into the processes and responses modulated by cytokinin in monocots

    RCN1-Regulated Phosphatase Activity and EIN2 Modulate Hypocotyl Gravitropism by a Mechanism That Does Not Require Ethylene Signaling

    Get PDF
    The roots curl in naphthylphthalamic acid1 (rcn1) mutant of Arabidopsis (Arabidopsis thaliana) has altered auxin transport, gravitropism, and ethylene response, providing an opportunity to analyze the interplay between ethylene and auxin in control of seedling growth. Roots of rcn1 seedlings were previously shown to have altered auxin transport, growth, and gravitropism, while rcn1 hypocotyl elongation exhibited enhanced ethylene response. We have characterized auxin transport and gravitropism phenotypes of rcn1 hypocotyls and have explored the roles of auxin and ethylene in controlling these phenotypes. As in roots, auxin transport is increased in etiolated rcn1 hypocotyls. Hypocotyl gravity response is accelerated, although overall elongation is reduced, in etiolated rcn1 hypocotyls. Etiolated, but not light grown, rcn1 seedlings also overproduce ethylene, and mutations conferring ethylene insensitivity restore normal hypocotyl elongation to rcn1. Auxin transport is unaffected by treatment with the ethylene precursor 1-aminocyclopropane carboxylic acid in etiolated hypocotyls of wild-type and rcn1 seedlings. Surprisingly, the ethylene insensitive2-1 (ein2-1) and ein2-5 mutations dramatically reduce gravitropic bending in hypocotyls. However, the ethylene resistant1-3 (etr1-3) mutation does not significantly affect hypocotyl gravity response. Furthermore, neither the etr1 nor the ein2 mutation abrogates the accelerated gravitropism observed in rcn1 hypocotyls, indicating that both wild-type gravity response and enhanced gravity response in rcn1 do not require an intact ethylene-signaling pathway. We therefore conclude that the RCN1 protein affects overall hypocotyl elongation via negative regulation of ethylene synthesis in etiolated seedlings, and that RCN1 and EIN2 modulate hypocotyl gravitropism and ethylene responses through independent pathways

    Ethylene supports colonization of plant roots by the mutualistic fungus Piriformospora indica

    Get PDF
    The mutualistic basidiomycete Piriformospora indica colonizes roots of mono- and dicotyledonous plants, and thereby improves plant health and yield. Given the capability of P. indica to colonize a broad range of hosts, it must be anticipated that the fungus has evolved efficient strategies to overcome plant immunity and to establish a proper environment for nutrient acquisition and reproduction. Global gene expression studies in barley identified various ethylene synthesis and signaling components that were differentially regulated in P. indica-colonized roots. Based on these findings we examined the impact of ethylene in the symbiotic association. The data presented here suggest that P. indica induces ethylene synthesis in barley and Arabidopsis roots during colonization. Moreover, impaired ethylene signaling resulted in reduced root colonization, Arabidopsis mutants exhibiting constitutive ethylene signaling, -synthesis or ethylene-related defense were hyper-susceptible to P. indica. Our data suggest that ethylene signaling is required for symbiotic root colonization by P. indica

    Characterization of Genes Involved in Cytokinin Signaling and Metabolism from Rice

    Get PDF
    Two-component signaling elements play important roles in plants, including a central role in cytokinin signaling. We characterized two-component elements from the monocot rice (Oryza sativa) using several complementary approaches. Phylogenetic analysis reveals relatively simple orthologous relationships among the histidine kinases in rice and Arabidopsis (Arabidopsis thaliana). In contrast, the histidine-containing phosphotransfer proteins (OsHPs) and response regulators (OsRRs) display a higher degree of lineage-specific expansion. The intracellular localizations of several OsHPs and OsRRs were examined in rice and generally found to correspond to the localizations of their dicot counterparts. The functionality of rice type-B OsRRs was tested in Arabidopsis; one from a clade composed of both monocot and dicot type-B OsRRs complemented an Arabidopsis type-B response regulator mutant, but a type-B OsRR from a monocot-specific subfamily generally did not. The expression of genes encoding two-component elements and proteins involved in cytokinin biosynthesis and degradation was analyzed in rice roots and shoots and in response to phytohormones. Nearly all type-A OsRRs and OsHK4 were up-regulated in response to cytokinin, but other cytokinin signaling elements were not appreciably affected. Furthermore, multiple cytokinin oxidase (OsCKX) genes were up-regulated by cytokinin. Abscisic acid treatment decreased the expression of several genes involved in cytokinin biosynthesis and degradation. Auxin affected the expression of a few genes; brassinosteroid and gibberellin had only modest effects. Our results support a shared role for two-component elements in mediating cytokinin signaling in monocots and dicots and reveal how phytohormones can impact cytokinin function through modulating gene expression
    corecore