721 research outputs found
Identification of Nonlinear Normal Modes of Engineering Structures under Broadband Forcing
The objective of the present paper is to develop a two-step methodology
integrating system identification and numerical continuation for the
experimental extraction of nonlinear normal modes (NNMs) under broadband
forcing. The first step processes acquired input and output data to derive an
experimental state-space model of the structure. The second step converts this
state-space model into a model in modal space from which NNMs are computed
using shooting and pseudo-arclength continuation. The method is demonstrated
using noisy synthetic data simulated on a cantilever beam with a
hardening-softening nonlinearity at its free end.Comment: Journal pape
Control-based continuation of nonlinear structures using adaptive filtering
Control-Based Continuation uses feedback control to follow stable and unstable branches of periodic orbits of a nonlinear system without the need for advanced post-processing of experimental data. CBC relies on an iterative scheme to modify the harmonic content of the control reference and obtain a non-invasive control signal. This scheme currently requires to wait for the experiment to settle down to steady-state and hence runs offline (i.e. at a much lower frequency than the feedback controller). This paper proposes to replace this conventional iterative scheme by adaptive filters. Adaptive filters can directly synthesize either the excitation or the control reference adequately and can operate online (i.e. at the same frequency as the feedback controller). This novel approach is found to significantly accelerate convergence to non-invasive steady-state responses to the extend that the structure response can be characterized in a nearly-continuous amplitude sweep. Furthermore, the stability of the controller does not appear to be affected
Validation of Two Nonlinear System Identification Techniques Using an Experimental Testbed
The identification of a nonlinear system is performed using experimental data and two different techniques, i.e. a method based on the Wavelet transform and the Restoring Force Surface method. Both techniques exploit the system free response and result in the estimation of linear and nonlinear physical parameters
Practical design of a nonlinear tuned vibration absorber
The aim of the paper is to develop a new nonlinear tuned vibration absorber (NLTVA) capable of mitigating the vibrations of nonlinear systems which are known to exhibit frequency-energy-dependent oscillations. A nonlinear generalization of Den Hartog’s equal-peak method is proposed to ensure equal peaks in the nonlinear frequency response for a large range of forcing amplitudes. An analytical tuning procedure is developed and provides the load-deflection characteristic of the NLTVA. Based on this prescribed relation, the NLTVA design is performed by two different approaches, namely thanks to (i) analytical formulas of uniform cantilever and doubly-clamped beams and (ii) numerical shape optimization of beams with varying width and thickness. A primary system composed of a cantilever beam with a geometrically nonlinear component at its free end serves to illustrate the proposed methodology.ERC Starting Grant NoVib 307265; ERC Starting Grant INNODY
(Co)constructing critical pedagogies: Expanding on our department’s approach to language teaching
In this report, we—the members of a curriculum working group (CWG) in Penn State’s German department—describe our efforts to decenter our German language sequence by integrating critical pedagogies into our department’s existing communicative language teaching (CLT) approach. We trace our process towards this goal, beginning with an exploration into and analysis of two critical pedagogies, namely Antiracist Pedagogy (ARP) and Social Justice Pedagogy (SJP). We ultimately adopt SJP because we find it to be a better fit for our purposes in German language instruction. We offer a framework to evaluate and didacticize existing as well as newly created course materials, guided by social justice (SJ) learning objectives. To illustrate our work, we describe the creation and implementation of an instructional unit in an intermediate German language course. Reflections from this course’s instructor and student reactions concerning this unit’s instruction—as well as SJP in the language classroom in general—make evident the importance of critical perspectives regarding curricular development in fostering equitable classrooms
Development of Numerical Algorithms for Practical Com- putation of Nonlinear Normal Modes
Abstract When resorting to numerical algorithms, we show that nonlinear normal mode (NNM) computation is possible with limited implementation effort, which paves the way to a practical method for determining the NNMs of nonlinear mechanical systems. The proposed method relies on two main techniques, namely a shooting procedure and a method for the continuation of NNM motions. In addition, sensitivity analysis is used to reduce the computational burden of the algorithm. A simplified discrete model of a nonlinear bladed disk is considered to demonstrate the developments
Damage detection by using FBGs and strain field pattern recognition techniques
A novel methodology for damage detection and location in structures is proposed. The methodology is based on strain measurements and consists in the development of strain field pattern recognition techniques. The aforementioned are based on PCA (principal component analysis) and damage indices (T 2 and Q). We propose the use of fiber Bragg gratings (FBGs) as strain sensor
Energy Linearity and Resolution of the ATLAS Electromagnetic Barrel Calorimeter in an Electron Test-Beam
A module of the ATLAS electromagnetic barrel liquid argon calorimeter was
exposed to the CERN electron test-beam at the H8 beam line upgraded for
precision momentum measurement. The available energies of the electron beam
ranged from 10 to 245 GeV. The electron beam impinged at one point
corresponding to a pseudo-rapidity of eta=0.687 and an azimuthal angle of
phi=0.28 in the ATLAS coordinate system. A detailed study of several effects
biasing the electron energy measurement allowed an energy reconstruction
procedure to be developed that ensures a good linearity and a good resolution.
Use is made of detailed Monte Carlo simulations based on Geant which describe
the longitudinal and transverse shower profiles as well as the energy
distributions. For electron energies between 15 GeV and 180 GeV the deviation
of the measured incident electron energy over the beam energy is within 0.1%.
The systematic uncertainty of the measurement is about 0.1% at low energies and
negligible at high energies. The energy resolution is found to be about 10%
sqrt(E) for the sampling term and about 0.2% for the local constant term
Hunt for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in 4.7 fb−1 of s√=7TeV proton-proton collisions
Results are presented of a search for new particles decaying to large numbers of jets in association with missing transverse momentum, using 4.7 fb−1 of pp collision data at s√=7TeV collected by the ATLAS experiment at the Large Hadron Collider in 2011. The event selection requires missing transverse momentum, no isolated electrons or muons, and from ≥6 to ≥9 jets. No evidence is found for physics beyond the Standard Model. The results are interpreted in the context of a MSUGRA/CMSSM supersymmetric model, where, for large universal scalar mass m 0, gluino masses smaller than 840 GeV are excluded at the 95% confidence level, extending previously published limits. Within a simplified model containing only a gluino octet and a neutralino, gluino masses smaller than 870 GeV are similarly excluded for neutralino masses below 100 GeV
- …