238 research outputs found

    A Top-Down Technique as an Analysis Tool for Auger Fluorescence Data

    Get PDF
    Abstract The Auger Observatory aims at the detection of Ultra-High-Energy CosmicRays by employing an array of ground-particle counters overviewed by atmospheric fluorescence telescopes -a mini prototype of which has been operative since 12/2001 near the town of Malargue in the province of Mendoza, Argentina. Conventional bottomup fluorescence data analyses techniques convert photons entering the telescope's diaphragm to shower size; energy and primary composition are then estimated by fitting a Gaisser-Hillas distribution. In this paper we discuss the potential capabilities of a top-down technique based on a robust primary energy estimator. Such technique uses hundreds of very fast-simulated shower longitudinal profiles and calculates their corresponding photon profiles seen by the telescopes. Primary energy and composition follow from maximum likelihood or chi-squared analyses

    Egalité formelle

    Get PDF

    Principe de non-discrimination

    Get PDF

    Analysis of acoustic emission during the melting of embedded indium particles in an aluminum matrix: a study of plastic strain accommodation during phase transformation

    Full text link
    Acoustic emission is used here to study melting and solidification of embedded indium particles in the size range of 0.2 to 3 um in diameter and to show that dislocation generation occurs in the aluminum matrix to accommodate a 2.5% volume change. The volume averaged acoustic energy produced by indium particle melting is similar to that reported for bainite formation upon continuous cooling. A mechanism of prismatic loop generation is proposed to accommodate the volume change and an upper limit to the geometrically necessary increase in dislocation density is calculated as 4.1 x 10^9 cm^-2 for the Al-17In alloy. Thermomechanical processing is also used to change the size and distribution of the indium particles within the aluminum matrix. Dislocation generation with accompanied acoustic emission occurs when the melting indium particles are associated with grain boundaries or upon solidification where the solid-liquid interfaces act as free surfaces to facilitate dislocation generation. Acoustic emission is not observed for indium particles that require super heating and exhibit elevated melting temperatures. The acoustic emission work corroborates previously proposed relaxation mechanisms from prior internal friction studies and that the superheat observed for melting of these micron-sized particles is a result of matrix constraint.Comment: Presented at "Atomistic Effects in Migrating Interphase Interfaces - Recent Progress and Future Study" TMS 201

    Photoperiod affects the phenotype of mitochondrial complex I mutants

    Get PDF
    Plant mutants for genes encoding subunits of mitochondrial Complex I (CI, NADH:ubiquinone oxidoreductase), the first enzyme of the respiratory chain, display various phenotypes depending on growth conditions. Here, we examined the impact of photoperiod, a major environmental factor controlling plant development, on two Arabidopsis thaliana CI mutants: a new insertion mutant interrupted in both ndufs8.1 and ndufs8.2 genes encoding the NDUFS8 subunit, and the previously characterized ndufs4 CI mutant. In long day (LD) condition, both ndufs8.1 and ndufs8.2 single mutants were indistinguishable from Col-0 at phenotypic and biochemical levels, whereas the ndufs8.1 ndufs8.2 double mutant was devoid of detectable holo-CI assembly/activity, showed higher AOX content/activity and displayed a growth-retardation phenotype similar to that of the ndufs4 mutant. Although growth was more affected in ndufs4 than ndufs8.1 ndufs8.2 under short day (SD) condition, both mutants displayed a similar impairment of growth acceleration after transfer to LD as compared to the WT. Untargeted and targeted metabolomics showed that overall metabolism was less responsive to the SD-to-LD transition in mutants than in the WT. The typical LD acclimation of carbon, nitrogen-assimilation and redox-related parameters was not observed in ndufs8.1 ndufs8. Similarly, NAD(H) content, that was higher in SD condition in both mutants than in Col-0, did not adjust under LD. We propose that altered redox homeostasis and NAD(H) content/redox state control the phenotype of Complex I mutants and photoperiod acclimation in Arabidopsis

    Inducible NAD overproduction in Arabidopsis alters metabolic pools and gene expression correlated with increased salicylate content and resistance to Pst-AvrRpm1

    Get PDF
    Plant development and function are underpinned by redox reactions that depend on co-factors such as nicotinamide adenine dinucleotide (NAD). NAD has recently been shown to be involved in several signalling pathways that are associated with stress tolerance or defence responses. However, the mechanisms by which NAD influences plant gene regulation, metabolism and physiology still remain unclear. Here, we took advantage of Arabidopsis thaliana lines that overexpressed the nadC gene from E. coli, which encodes the NAD biosynthesis enzyme quinolinate phosphoribosyltransferase (QPT). Upon incubation with quinolinate, these lines accumulated NAD and were thus used as inducible systems to determine the consequences of an increased NAD content in leaves. Metabolic profiling showed clear changes in several metabolites such as aspartate-derived amino acids and NAD-derived nicotinic acid. Large-scale transcriptomic analyses indicated that NAD promoted the induction of various pathogen-related genes such as the salicylic acid (SA)-responsive defence marker PR1. Extensive comparison with transcriptomic databases further showed that gene expression under high NAD content was similar to that obtained under biotic stress, eliciting conditions or SA treatment. Upon inoculation with the avirulent strain of Pseudomonas syringae pv. tomato Pst-AvrRpm1, the nadC lines showed enhanced resistance to bacteria infection and exhibited an ICS1-dependent build-up of both conjugated and free SA pools. We therefore concluded that higher NAD contents are beneficial for plant immunity by stimulating SA-dependent signalling and pathogen resistance

    The Swarm Initial Field Model for the 2014 geomagnetic field

    Get PDF
    Data from the first year of ESA's Swarm constellation mission are used to derive the Swarm Initial Field Model (SIFM), a new model of the Earth's magnetic field and its time variation. In addition to the conventional magnetic field observations provided by each of the three Swarm satellites, explicit advantage is taken of the constellation aspect by including east-west magnetic intensity gradient information from the lower satellite pair. Along-track differences in magnetic intensity provide further information concerning the north-south gradient. The SIFM static field shows excellent agreement (up to at least degree 60) with recent field models derived from CHAMP data, providing an initial validation of the quality of the Swarm magnetic measurements. Use of gradient data improves the determination of both the static field and its secular variation, with the mean misfit for east-west intensity differences between the lower satellite pair being only 0.12 nT

    Superconductivity in the Intercalated Graphite Compounds C6Yb and C6Ca

    Get PDF
    In this letter we report the discovery of superconductivity in the isostructural graphite intercalation compounds C6Yb and C6Ca, with transition temperatures of 6.5K and 11.5K respectively. A structural characterisation of these compounds shows them to be hexagonal layered systems in the same class as other graphite intercalates. If we assume that all the outer s-electrons are transferred from the intercalant to the graphite sheets, then the charge transfer in these compounds is comparable to other superconducting graphite intercalants such as C8K 1,2 . However, the superconducting transition temperatures of C6Yb and C6Ca are up to two orders of magnitude greater. Interestingly, superconducting upper critical field studies and resistivity measurements suggest that these compounds are significantly more isotropic than pure graphite. This is unexpected as the effect of introducing the intercalant is to move the graphite layer further apart.Comment: 2 Figures. Please see accompanying theoretical manuscript, "Electronic Structure of the Superconducting Graphite Intercalates" by Csanyi et al., cond-mat/050356

    Multimodal Biomarkers That Predict the Presence of Gleason Pattern 4: Potential Impact for Active Surveillance

    Get PDF
    AbstractPurpose:Latent grade group ≥2 prostate cancer can impact the performance of active surveillance protocols. To date, molecular biomarkers for active surveillance have relied solely on RNA or protein. We trained and independently validated multimodal (mRNA abundance, DNA methylation, and/or DNA copy number) biomarkers that more accurately separate grade group 1 from grade group ≥2 cancers.Materials and Methods:Low- and intermediate-risk prostate cancer patients were assigned to training (n=333) and validation (n=202) cohorts. We profiled the abundance of 342 mRNAs, 100 DNA copy number alteration loci, and 14 hypermethylation sites at 2 locations per tumor. Using the training cohort with cross-validation, we evaluated methods for training classifiers of pathological grade group ≥2 in centrally reviewed radical prostatectomies. We trained 2 distinct classifiers, PRONTO-e and PRONTO-m, and validated them in an independent radical prostatectomy cohort.Results:PRONTO-e comprises 353 mRNA and copy number alteration features. PRONTO-m includes 94 clinical, mRNAs, copy number alterations, and methylation features at 14 and 12 loci, respectively. In independent validation, PRONTO-e and PRONTO-m predicted grade group ≥2 with respective true-positive rates of 0.81 and 0.76, and false-positive rates of 0.43 and 0.26. Both classifiers were resistant to sampling error and identified more upgrading cases than a well-validated presurgical risk calculator, CAPRA (Cancer of the Prostate Risk Assessment; P < .001).Conclusions:Two grade group classifiers with superior accuracy were developed by incorporating RNA and DNA features and validated in an independent cohort. Upon further validation in biopsy samples, classifiers with these performance characteristics could refine selection of men for active surveillance, extending their treatment-free survival and intervals between surveillance.Active surveillance (AS) is recommended for men with low- and favorable intermediate–risk prostate cancer.1 Compared to AS for low-risk men, AS for intermediate-risk men would likely benefit from more intensive surveillance to stave off disease progression. Despite increased use of advanced imaging tools, risk calculators, and molecular biomarkers, a third or more of men initially classified as low risk actually have intermediate or higher risk, heralded by subsequent detection of occult Gleason pattern 4.2,3 Strategies to identify such men have limited accuracy. They include attention to traditional risk factors such as age, tumor size and extent, and PSA level, measured by tests such as digital rectal examination, multiparametric (mp) MRI, and biopsy and blood analyses. Despite its increasing use in prostate cancer risk assessment, expert prostate mpMRI is a limited resource with low (circa 59%) sensitivity for intermediate-risk cases.4 A biomarker that more accurately distinguishes between grade group (GG) 1 and GG ≥2 could be helpful in deintensifying AS for men with truly low-risk cancers.Several commercially available and guideline-approved tests use gene (mRNA or protein) expression levels in prostate cancer biopsies to detect adverse pathology (AP; ie, GG ≥3 or nonorgan-confined disease) in the subsequent prostatectomy. However, no existing molecular test has been adopted in current guidelines as standard of care to distinguish between GG1 and GG ≥2 cancers.1,5,6 Despite indications that such tests could be useful,6,7 uptake has been limited, perhaps because of low accuracy, which in turn may derive from limitations in the number and types of molecular features included in each test. Since cardinal molecular features of early prostate carcinogenesis include not only altered gene expression but also DNA methylation events and copy number alterations (CNAs),8-10 we hypothesized that tests combining these features could provide superior performance in separating low-grade (GG1) cancers from their higher-grade (GG ≥2) counterparts.The personalized risk stratification for patients with early prostate cancer (PRONTO) program is a pan-Canadian effort that aims to develop a GG classifier to stratify risk in prostate cancer and achieve technical and clinical validation in statistically powered cohorts. Here, we report the development of 2 candidate classifiers comprising different types of molecular features. These classifiers, developed and independently validated, achieve superior performance by integrating tumor mRNA abundance, DNA copy number, and/or DNA methylation profiles. We demonstrate that these classifiers could add value above and beyond routinely captured clinical data and are remarkably resistant to sampling error. We discuss how adoption of classifiers with these attributes has the potential to improve current AS approaches without increasing patient morbidity. By identifying men at increased risk of occult GG ≥2 cancer, surveillance biopsies could be taken earlier to confirm the presence and extent of Gleason pattern 4 cancer. By confirming GG1 cancers, such biomarkers could identify men for whom it would be safe to forgo MRI or increase the intervals between surveillance biopsies, reducing burdens on health care systems and patients

    Cosmic dust grains strike again

    Get PDF
    A detailed simulation of air showers produced by dust grains has been performed by means of the {\sc aires} Monte Carlo code with the aim of comparing with experimental data. Our analysis indicates that extensive dust grain air showers must yet be regarded as highly speculative but they cannot be completely ruled out.Comment: Improved revised version with comments by an anonymous referee. Accepted for publication in Physical review
    corecore