93 research outputs found

    Spectral solution for the air stripping pollutants removal dynamic model with non linear steady state conditions

    Get PDF
    This work deals with the numerical simulation of air stripping process for the pre-treatment of groundwater used in human consumption. The model established in steady state presents an exponential solution that is used, together with the Tau Method, to get a spectral approach of the solution of the system of partial differential equations associated to the model in transient state

    Polypill use for the prevention of cardiovascular disease: a position paper

    Get PDF
    Cardiovascular (CV) guidelines stress the need for global intervention to manage risk factors and reduce the risk of major vascular events. Growing evidence supports the use of polypill as a strategy to prevent cerebral and cardiovascular disease, however it is still underused in clinical practice. This paper presents an expert consensus aimed to summarize the data regarding polypill use. The authors consider the benefits of polypill and the significant claims for clinical applicability. Potential advantages and disadvantages, data regarding several populations in primary and secondary prevention, and pharmacoeconomic data are also addressed.info:eu-repo/semantics/publishedVersio

    Induction of neurotrophin expression via human adult mesenchymal stem cells: implication for cell therapy in neurodegenerative diseases.

    Get PDF
    In animal models of neurological disorders for cerebral ischemia, Parkinson's disease, and spinal cord lesions, transplantation of mesenchymal stem cells (MSCs) has been reported to improve functional outcome. Three mechanisms have been suggested for the effects of the MSCs: transdifferentiation of the grafted cells with replacement of degenerating neural cells, cell fusion, and neuroprotection of the dying cells. Here we demonstrate that a restricted number of cells with differentiated astroglial features can be obtained from human adult MSCs (hMSCs) both in vitro using different induction protocols and in vivo after transplantation into the developing mouse brain. We then examined the in vitro differentiation capacity of the hMSCs in coculture with slices of neonatal brain cortex. In this condition the hMSCs did not show any neuronal transdifferentiation but expressed neurotrophin low-affinity (NGFRp75) and high-affinity (trkC) receptors and released nerve growth factor (NGF) and neurotrophin-3 (NT-3). The same neurotrophin's expression was demonstrated 45 days after the intracerebral transplantation of hMSCs into nude mice with surviving astroglial cells. These data further confirm the limited capability of adult hMSC to differentiate into neurons whereas they differentiated in astroglial cells. Moreover, the secretion of neurotrophic factors combined with activation of the specific receptors of transplanted hMSCs demonstrated an alternative mechanism for neuroprotection of degenerating neurons. hMSCs are further defined in their transplantation potential for treating neurological disorders

    Effect of human skin-derived stem cells on vessel architecture, tumor growth, and tumor invasion in brain tumor animal models

    Get PDF
    Glioblastomas represent an important cause of cancer-related mortality with poor survival. Despite many advances, the mean survival time has not significantly improved in the last decades. New experimental approaches have shown tumor regression after the grafting of neural stem cells and human mesenchymal stem cells into experimental intracranial gliomas of adult rodents. However, the cell source seems to be an important limitation for autologous transplantation in glioblastoma. In the present study, we evaluated the tumor targeting and antitumor activity of human skin-derived stem cells (hSDSCs) in human brain tumor models. The hSDSCs exhibit tumor targeting characteristics in vivo when injected into the controlateral hemisphere or into the tail vein of mice. When implanted directly into glioblastomas, hSDSCs distributed themselves extensively throughout the tumor mass, reduced tumor vessel density, and decreased angiogenic sprouts. In addition, transplanted hSDSCs differentiate into pericyte cell and release high amounts of human transforming growth factor-beta1 with low expression of vascular endothelial growth factor, which may contribute to the decreased tumor cell invasion and number of tumor vessels. In long-term experiments, the hSDSCs were also able to significantly inhibit tumor growth and to prolong animal survival. Similar behavior was seen when hSDSCs were implanted into two different tumor models, the chicken embryo experimental glioma model and the transgenic Tyrp1-Tag mice. Taken together, these data validate the use of hSDSCs for targeting human brain tumors. They may represent therapeutically effective cells for the treatment of intracranial tumors after autologous transplantation

    Activation of PKA via asymmetric allosteric coupling of structurally conserved cyclic nucleotide binding domains

    Get PDF
    Cyclic nucleotide-binding (CNB) domains allosterically regulate the activity of proteins with diverse functions, but the mechanisms that enable the cyclic nucleotide-binding signal to regulate distant domains are not well understood. Here we use optical tweezers and molecular dynamics to dissect changes in folding energy landscape associated with cAMP-binding signals transduced between the two CNB domains of protein kinase A (PKA). We find that the response of the energy landscape upon cAMP binding is domain specific, resulting in unique but mutually coordinated tasks: one CNB domain initiates cAMP binding and cooperativity, whereas the other triggers inter-domain interactions that promote the active conformation. Inter-domain interactions occur in a stepwise manner, beginning in intermediate-liganded states between apo and cAMP-bound domains. Moreover, we identify a cAMP-responsive switch, the N3A motif, whose conformation and stability depend on cAMP occupancy. This switch serves as a signaling hub, amplifying cAMP-binding signals during PKA activation

    Can physiological endpoints improve the sensitivity of assays with plants in the risk assessment of contaminated soils?

    Get PDF
    Site-specific risk assessment of contaminated areas indicates prior areas for intervention, and provides helpful information for risk managers. This study was conducted in the Ervedosa mine area (Bragança, Portugal), where both underground and open pit exploration of tin and arsenic minerals were performed for about one century (1857-1969). We aimed at obtaining ecotoxicological information with terrestrial and aquatic plant species to integrate in the risk assessment of this mine area. Further we also intended to evaluate if the assessment of other parameters, in standard assays with terrestrial plants, can improve the identification of phytotoxic soils. For this purpose, soil samples were collected on 16 sampling sites distributed along four transects, defined within the mine area, and in one reference site. General soil physical and chemical parameters, total and extractable metal contents were analyzed. Assays were performed for soil elutriates and for the whole soil matrix following standard guidelines for growth inhibition assay with Lemna minor and emergence and seedling growth assay with Zea mays. At the end of the Z. mays assay, relative water content, membrane permeability, leaf area, content of photosynthetic pigments (chlorophylls and carotenoids), malondialdehyde levels, proline content, and chlorophyll fluorescence (Fv/Fm and ΦPSII) parameters were evaluated. In general, the soils near the exploration area revealed high levels of Al, Mn, Fe and Cu. Almost all the soils from transepts C, D and F presented total concentrations of arsenic well above soils screening benchmark values available. Elutriates of several soils from sampling sites near the exploration and ore treatment areas were toxic to L. minor, suggesting that the retention function of these soils was seriously compromised. In Z. mays assay, plant performance parameters (other than those recommended by standard protocols), allowed the identification of more phytotoxic soils. The results suggest that these parameters could improve the sensitivity of the standard assays
    corecore