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Abstract

Site-specific risk assessment of contaminated areas indicates prior areas for intervention, and provides helpful information
for risk managers. This study was conducted in the Ervedosa mine area (Bragança, Portugal), where both underground and
open pit exploration of tin and arsenic minerals were performed for about one century (1857 – 1969). We aimed at
obtaining ecotoxicological information with terrestrial and aquatic plant species to integrate in the risk assessment of this
mine area. Further we also intended to evaluate if the assessment of other parameters, in standard assays with terrestrial
plants, can improve the identification of phytotoxic soils. For this purpose, soil samples were collected on 16 sampling sites
distributed along four transects, defined within the mine area, and in one reference site. General soil physical and chemical
parameters, total and extractable metal contents were analyzed. Assays were performed for soil elutriates and for the whole
soil matrix following standard guidelines for growth inhibition assay with Lemna minor and emergence and seedling growth
assay with Zea mays. At the end of the Z. mays assay, relative water content, membrane permeability, leaf area, content of
photosynthetic pigments (chlorophylls and carotenoids), malondialdehyde levels, proline content, and chlorophyll
fluorescence (Fv/Fm and WPSII) parameters were evaluated. In general, the soils near the exploration area revealed high levels
of Al, Mn, Fe and Cu. Almost all the soils from transepts C, D and F presented total concentrations of arsenic well above soils
screening benchmark values available. Elutriates of several soils from sampling sites near the exploration and ore treatment
areas were toxic to L. minor, suggesting that the retention function of these soils was seriously compromised. In Z. mays
assay, plant performance parameters (other than those recommended by standard protocols), allowed the identification of
more phytotoxic soils. The results suggest that these parameters could improve the sensitivity of the standard assays.
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Introduction

Plants are essential components of ecosystems as they are

primary producers of organic matter and oxygen, and a food

source for heterotrophic organisms, humans included. They are

considered versatile tools to monitor the presence and the effects of

pollutants in soil, for they are in close contact with the soil matrix

and with soil pore water, absorbing both nutrients and pollutants

and responding to changes in soil properties [1,2,3,4]. Several are

the reasons why plants have been widely used in assays, to evaluate

soil quality and risk assessment of phytotoxic compounds: i) they

have a sedentary existence, so they can be continuously exposed to

a source of pollution throughout their life cycle; ii) seeds are

relatively inexpensive and plants are easily cultured in laboratory;

iii) their biological responses can be evaluated in a short period of

time and, iv) their condition/performance can be monitored in

different ways, from physical observations to spectroscopic

methods [5,6,7]. In order to ensure comparability of results across

studies and laboratories, there is a list of standardized plant species

that can be used in toxicity tests [8,9].

As far as tests with terrestrial plants are considered, the

standardized protocols suggest that parameters such as seed

germination, growth above soil and/or root growth have to be

evaluated [8,10]. As with other tests, these can be considered acute

when they evaluate potential immediate effects, as inhibition of

seed germination, inhibition of seedling growth and biomass

production, and chronic when evaluating long-term effects

involving those occurring in the life cycle of the plant [11].

However, there are several other ecophysiological parameters that

can be evaluated in plants, which can potentially be more sensitive

and indicative of stress conditions. These parameters are usually

not considered in plant tests because they are not previewed in

standard protocols. However, besides the standard parameters, the

evaluation of other physiological (e.g. chlorophyll fluorescence,

pigments content) and biochemical (e.g. content of malondialde-

hyde and proline, enzymes activity) parameters may also be

important [2,6], as they can help finding out potential false

negative results.

Photosynthesis is a core function in the physiology of plants,

during which light is captured by chlorophyll molecules and by
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two photosystems (PSI and PSII) in the membrane of thylakoids

and then used to remove electrons from water molecules. Such

electrons are transported through an electron transport system and

finally accepted by NADP+ molecules. Meanwhile, the transpor-

tation of electrons occurs in close association with the passive

movement of protons to the lumen of thylakoids. The energy of

this gradient is used for the phosphorylation of ADP. Both ATP

and NADPH molecules are key products for CO2 fixation and the

production of sugars in the dark step of the process (Calvin Cycle)

[12].

The photosynthetic system of higher plants has been shown to

be sensitive, reacting to different kinds of stress agents like drought

[13], salinity [14], metals [15,16,17] and herbicides [18], in

shorter periods of time. During stress conditions plants lose their

ability to use light energy and dissipation mechanisms are

triggered to protect the plant from photoinhibition and photo-

xidation [19]. The excess of light energy can be dissipated as heat

or as chlorophyll fluorescence [20]. Hence, impairments in the

photosynthetic activity can be evaluated measuring chlorophyll

fluorescence parameters like WPSII, which measures the efficiency

of the PSII photochemistry (i.e. the proportion of light absorbed by

chlorophyll molecules used in photochemistry reactions) and Fv/

Fm the maximum efficiency of PSII (the efficiency of the PSII

when all the reactive centres are open) [20]. The evaluation of

these parameters has been facilitated by the marketing of user

friendly and portable devices, which makes routine evaluations

possible. Further, these measurements have the great advantage of

being non-destructive allowing multiple evaluations throughout

plant exposures to stressful conditions.

Additionally, when the rate of excitation of chlorophyll

molecules exceeds the conversion of energy in the reaction centres

of PSII, excited chlorophyll molecules can generate singlet oxygen

molecules, which can promote photoxidation. At this stage,

carotenoids, which are also components of PSII, take action, as

non-enzymatic antioxidants, scavenging excited chlorophyll mol-

ecules and dissipating energy as heat [14,19]. However, not only

singlet oxygen species but also other reactive oxygen species

(ROS), generated by different stress agents, may induce oxidative

damage to pigments, impairing overall photosynthetic activity

(photoinhibition). The aminoacids metabolism has being shown as

crucial in the response of plants to oxidative stress agents because

aminoacids like proline, amongst other functions, may act as

hydroxyl radical scavengers [21].

Having in mind all of these mechanisms involved in plants

response to toxicants, the aim of the present study was to evaluate

the ability of new endpoints to increase the sensitivity of plant

assays, to identify natural soils, seriously contaminated with metals,

based on their phytotoxicity. To attain this purpose, both the

whole soil matrix and soil elutriates, for a set of soil samples from

an abandoned mine area, were assessed through seed germination

and growth assay with Zea mays and a growth inhibition assay with

Lemna minor, respectively. The assays were performed according to,

standard protocols. Further, other plant physiological parameters

as water content, chlorophylls (a and b) and carotenoids content,

chlorophyll fluorescence (Fv/Fm and WPSII), membrane perme-

ability and oxidative stress parameters (proline and MDA content)

were assessed in Zea mays at the end of the assay. Here, we

hypothesized that more soils will be identified as phytotoxic, if

more plant performance parameters are measured. Here we

hypothesized that the more plant performance parameters are

measured, the more soils will be identified as phytotoxic.

Materials and Methods

No specific permisiions were required for these locations

activities. We confirm that the location is not privately-owned or

protected in any way and we confirm that the field studies did not

involve endangered or protected species.

Study site and soil sampling
The Ervedosa Mine is located in Vinhais, district of Bragança,

in northeast Portugal. In this mine arsenic (As) and tin (Sn) were

explored for about one hundred years (1857–1969) (figure 1)

deeply changing the overall landscape [22]. Environmental

contamination of local soils by metals was evaluated and reported

by Novais [23]. The levels of metals detected in soils, of this area,

have raised concerns about the potential risks to local natural

communities. Some soils have also shown to be highly toxic for

species like Eisenia andrei, Folsomia candida, Pseudokirchneriella sub-

capitata, Daphnia magna and Vibrio fischeri (unpublished data)

confirming their hazard for edaphic species.

In the mine area four transects (C, D, E and F) were considered

with four sampling points each, set apart from each other for about

50 m (figure 1). Additionally, a reference site was selected, 3 km

away from the mine area. Transect C began in the ore treatment

area and extended north. Transect D extended from the mining

area to the river Tuela. Transect E started in the ore exploration

area and extended south, to the Ervedosa village. Further, transect

F was set parallell to the river Tuela and crossed the area where

the ore was treated to extract metals of interest.

Surface soil samples (0–20 cm) were collected in the seventeen

sampling points and brought to the laboratory where they were left

to dry at room temperature. Thereafter the samples were sieved

and the ,4 mm fraction was stored for physical and chemical

characterization and for plant assays.

General physical and chemical characterization of soil
samples

Soil conductivity was measured in a soil-water suspension

according to the method described by FAOUN [24]. For this

purpose 10 g of soil, were mechanically shaken with 50 mL of

distilled water during 15 min. The suspension was left to rest

overnight and conductivity was measured using a pre-calibrated

LF330/SET conductivity meter. Soil pHKCl was measured in a

suspension of soil, prepared with a solution of KCl 1M, according

to ISO 10390 [25].

Water holding capacity (WHC) of soils was measured according

to the procedure described in the ISO 10390 guidelines [25]. Soil

samples were placed in polypropylene flasks, with the bottom

replaced by filter paper and immersed in water for 3 h. After this

period flasks were placed on absorbent paper for 2 h to reject the

excess of water that could not be retained by soil. The WHC was

then determined by weighting each replicate before and after

drying at 105uC until weight stabilization [25].

Soil water content (moisture) was determined by weight loss, at

105uC, for 24 h. The organic matter content (OM) was

determined by weight loss on ignition at 450uC, during 8 h,

according to SPAC [26]. All parameters described above were

measured in three soil replicates.

Soil metal content: total and extractable concentrations
The content in metals of soil samples was determined by two

extraction methods: a strong one with aqua regia and a mild

extraction with calcium chloride 0.01 M [27]. For the aqua regia

extraction, 1 g of each soil replicate was digested with 3 mL of

37% hydrochloric acid (pro analysis, Panreac) and 1 mL of 65%
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nitric acid (Suprapur, Merck), in closed Teflon flasks. The flasks

were heated on a sand bath at 100uC for 5 h. After this period,

10 mL of HNO3 (4N) were added to the flasks and the solution

was filtered, through 0.2 mm FT30/0.2CA-S filters, to remove all

coarser particles, and transferred to polypropylene volumetric

tubes. At the end of acid digestion the volume of each extract was

adjusted with distilled water until a final volume of 25 mL was

attained. For quality control of the extraction procedure, the same

process was carried out using the same reagents but without the

soil sample and three blank samples were prepared and sent for

analysis. For the extraction with calcium chloride 0.01 M,

suspensions of soil in the CaCl2 solution (0.01 M) (1:10 m/v))

[27] were prepared for all the soil replicates. The soil suspensions

were shaken mechanically for 2 h, at 2062uC. After this, the

suspensions were centrifuged at 4000 rpm and stored (acidified to

pH,2 with HNO3) for quantification of metals. Total and

extractable concentrations of Al, Pb, P, V, Mn, Fe, Cu, Zn, As, Sb,

Ba and Sn were analyzed by ICP-MS (Thermo X-Series

quadrupole ICP-MS, Thermo Scientific).

Lemna minor assay
L. minor was obtained from laboratorial cultures reared under

controlled conditions (temperature 2062uC; photoperiod

16 hL:8 hD; illuminance: 10000 lux) in Steinberg medium accord-

ing to the guideline OECD 221 [28]. The tests were performed

with soil elutriates obtained from suspensions of soil samples in

Steinberg medium (1:4 m/v). These suspensions were mechani-

cally shaken overnight and then left to stand for 12 h for

sedimentation. After this period, suspensions/elutriates were

decanted and the supernatant portion was collected. L. minor was

exposed, in three replicates, to a range of elutriate dilutions

(100 mL/replicate). The assay was started placing nine fronds of

L. minor, per vessel, under the controlled conditions described

above. In the control replicates L. minor fronds were exposed only

to the Steinberg medium. After 7 days of exposure, the fronds of

each replicate were collected, dried at 70uC, till weight stabiliza-

tion, and weighted. Growth rate was quantified according to the

equation: GR = (Ln (Wf)-Ln(Wi))/7 (Wf and Wi are final and initial

weights, respectively) [28]. IC50 values and corresponding 95%

confidence limits, for each elutriate, were determined by nonlinear

regression analysis, fitting a logistic equation to the data using

technique of least squares. The software Statistica 10.0 was used

for this purpose.

Zea mays seed germination and growth assay
Seed germination and growth assay with Z. mays were

performed according to the ISO 11269-2 guideline [8]. Seeds

were purchased from a local supplier and the damaged ones were

discarded after visual inspection. Assays were performed in plastic

pots, which were filled with 200 g of soil (four replicates per soil).

Control was conducted with OECD standard soil [29]. Twenty

seeds were added to each pot. In the beginning of the assay, a

commercial solution of nutrients (SubstralTM 10%) was added to

each pot. Pots were maintained at controlled temperature

Figure 1. Study area and location of transects and sampling points (adapted from Carvalho et al. [22]).
doi:10.1371/journal.pone.0059748.g001
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(2062uC), photoperiod (16 hL: 8 hD) and illuminance (about

25000 lux). During daily observations, the number of emerged

seeds was recorded and the water content of the pots was checked

and adjusted. Only the first five emerged seeds were left to growth,

the remaining ones were counted and harvested. The assay was

validated and started after 50% of the seeds from the control pots

emerged. Fourteen days later, the assay finished. Chlorophyll

fluorescence measures were taken in the adaxial side of leaves of

two plants from each soil replicate. The biomass above soil was

harvested (only for four plants per pot) and wet weight was

immediately determined. Dry biomass was weighted after drying

at 70uC.

The leaves collected to measure water content and membrane

permeability of plant cells were immediately processed, while the

leaves for the quantification of chlorophylls, carotenoids, proline

and malondialdehyde content were immediately frozen in liquid

nitrogen and stored in a deep freezer for further analysis. These

parameters were measured in plant leaves that were collected from

one plant per replicate.

Plant performance parameters in Zea mays assay
Specific leaf area. The leaves harvested to determine

specific leaf area (SLA) were placed on graph paper (used as

scale) and then photographed. Afterwards the leaf area was

determined with the ImageJ 1.43 m software (Internet free). The

leaves were weighed on an analytical balance and were dried at

60uC, until stabilization, and the dry weight was determined. SLA

was then calculated as the ratio of leaf area (cm2) to leaf dry weight

(g).

Photosynthetic pigments (chlorophyll and carotenoid

contents). Chlorophylls (chl a and chl b) and carotenoids were

determined spectrophotometrically according to the method

described by Sims and Gamon [30]. Pigments were extracted

from leaves samples of about 0.5 g, and were homogenized in

2 mL of cold acetone (99% CleanseH)/Tris buffer 50 mM (99.8%

MerckH) (80:20, v/v). Then the extracts were transferred to

centrifuge tubes, homogenized in vortex for about 30 s and

centrifuged for 5 min, at 4000 rpm and 4uC. The supernatant was

transferred to new tubes which were stored in ice and in the dark.

The extraction procedure was repeated by adding more 1.5 mL of

the same extraction solution to the pellet. The resulting

supernatant was collected into former tubes, kept in the dark,

and once again the extraction solution was added till a final

volume of 6 mL was attained.

The quantification of chlorophyll (a and b) and carotenoid

contents was achieved by spectrophotometry, measuring absor-

bance of the extracts at 470, 537, 647 and 663 nm in a Thermo

Scientific Vis Spectrophotometer 10S TM. The extraction

solution was used as blank for zeroing the absorbance.

Malondialdehyde content. The content of malondialdehyde

(MDA) in samples of plant tissue was determined by the

thiobarbituric acid method as described by Elkahoui et al. [31].

The MDA is an end product of lipid peroxidation in plant cells.

Hence samples of leaves, of about 0.5 g, from one plant per

replicate, were homogenized with 5 mL of 0.1% trichloroacetic

acid (TCA) (Riedel-de Haën). The homogenates were centrifuged

for 5 min, at 4000 rpm and at 4uC. Then, aliquots of 1 mL of the

supernatant were transferred to falcon tubes and 4 mL of 20%

TCA solution containing 0.5% of thiobarbituric acid (TBA)

($98%, Sigma-Aldrich) were added to the tubes. The tubes were

placed in a water bath, at 95uC, for 30 min. After cooling in ice,

the tubes were centrifuged for 10 min at 4000 rpm and at 4 uC.

The specific and the non-specific absorbance of the supernatant

were measured at 532 and 600 nm, respectively. Distilled water

was used as blank for zeroing the absorbance of the spectophot-

ometer Thermo Scientific TM 10S Vis. The MDA content was

calculated subtracting the non-specific absorbance at 600 nm and

using the molar extinction coefficient e= 155 mM21 cm21.

Proline content. The proline content of plant leaves was

determined according to the method described by Khedr et al.

[32]. From each plant (one plant per replicate) about 100 mg of

leaves were homogenized in 1.5 mL of 3% sulfosalicylic acid

($99%, Sigma). After centrifugation of the extracts at 4000 rpm,

100 mL of the supernatant were transferred to new tubes and

mixed with 2 mL of glacial acetic acid (pro analysis, Panreac) and

2 mL of ninhydrin (Riedel-de Haën). The mixture was incubated

in a water bathat 100uC, for 1 h. After this period, the tubes were

placed in ice, and 1 mL of toluene (99.9%, Merck) was added to

cooled tubes, in a hote. Absorbance of the chromophore solution

was measured at 520 nm in a Thermo Scientific TM 10S Vis

spectrophotometer [32]. The content of proline in samples was

then extrapolated from a calibration line obtained measuring the

absorbances of proline solutions of known concentration (0.2, 0.1,

0.05, 0.025, 0.0125 mg mL21).

Relative water content. For the evaluation of this parameter

each leaf was weighed on an analytical balance (FW), and then

placed in a Falcon tube completelly filled with distilled water. The

tubes were left in the dark, at 4uC, for 12 h. After this periodthe

leaves were removed from water and placed on an absorbent

paper to remove the excess of water, and the turgid weight (Tw)

was determined. Afterwards, leaves were dried at 60uC, until

stabilization and the dry weight was determined (Dw). The relative

water content of plant leaves (RWC) was calculated using the

following equation, and expressed as a percentage:

RWC %ð Þ~ FW-DWð Þ= Tw-FWð Þ½ �|100

Chlorophyll fluorescence (Fv/Fm and

WPSII). Chlorophyll fluorescence measurements were per-

formed on the same expanded leaves of each plant using a

portable fluorometer (Minipan Photosynthesis Yield Analyser,

Walz, Effeltrich, Germany). Light exclusion clips were placed on

the adaxial side of the leaves for 30 min and the following

chlorophyll (chl) fluorescence measurements were taken [20]:

minimum chl fluorescence in the dark adapted state (F0), when all

the reaction centres of PSII are opened; maximum chl fluores-

cence in the dark adapted state (Fm), after a pulse of actinic light

(0.8 s to 8000 micromol m22 s21) has closed all the reaction

centres of PSII; the steady state chl fluorescence in the light

adapted state (Ft); and the maximum chl fluorescence in the light

adapted state (F’m) after the same pulse of actinic light has been

applied. With these measurements the efficiency of photosystem II

(quantum yield) (WPSII) and the maximum quantum yield or the

maximum photosynthetic efficiency of photosystem II (Fv/Fm)

were calculated based on the following equations:

WPSII~ F0m { Ftð Þ =F0mand Fv =Fm~ Fm{F0ð Þ =Fm

Membrane permeability. Membrane stability was estimat-

ed indirectly through quantification of electrolyte leakage accord-

ing to, the method described by Lutts et al. [33]. One leaf from

each replicate was weighed, washed with Milli Q water and then

placed in falcon tubes filled with Milli Q water. The ratio mass/

volume was the same in all the tubes. The tubes were shaken

mechanically for 12 h in an orbital shaker. At the end of this
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period, the conductivity of the solution was measured with a

conductivimeter (CONSORT C830 - Multi-parameter analyzer)

(Cinicial). Then the vials were placed in the autoclave for 10 min, at

121uC. After cooling, the conductivity of the solution (Cfinal) was

measured again. The membrane permeability and the ratio of

conductivities Cinicial/Cfinal were calculated and expressed as a

percentage.

Stastical analysis
To test for significant differences in the parameters measured in

plants, exposed to different mine soils, one-way analysis of

variance (ANOVA) was performed, after the Levene’s test for

checking homogeneity of variances. When significant differences

were recorded by the one-way analysis of variances, a two-tailed

Dunnet or Games-Howel test (GHT) (when the assumption of

equal variances was not accomplished) was perfomed to compare

each soil with the REF soil, in terms of the paremeter under

evaluation. The authors chose parametric tests, instead of non-

parametric tests, even when the assumptions were not met,

because one–way ANOVA has proved to be robust even when

some deviations from requirements occur [34].

Results and Discussion

Soil contamination is considered one of the main causes of soil

degradation worldwide and in Europe in particular [35]. After the

recognition of the high rate of the verified soil loss, the European

Union has developed new legal documents to protect the soils

within the European territory. Within this scenario a soil

framework directive was proposed and has been under discussion,

since 2006 [36]. Amongst other aspects, this directive states that

each member state should provide a list of the contaminated sites

within their territory [36]. Such requirement will lead all the

member states to enforce the application of environmental risk

assessment (ERA) frameworks. Phytotoxic tests are required by

ERA frameworks [37] to assess soil habitat, retention (aquatic

species) and production functions. Bearing this idea in mind, this

work was developed to assess the phytotoxicity of soils collected in

the Ervedosa mine (north of Portugal) explored in the past for tin

and arsenic. Further, we have hypothesized that we can improve

the sensitivity of the standard phytotoxic assays evaluating other

plant physiological, biochemical and chlorophyll fluorescence

parameters, based on the assumption that these parameters will be

able to detect stress before visible signs have evolved.

Soils physical and chemical characterization
The average values recorded for the different physical and

chemical parameters measured in each soil sample collected in the

Ervedosa mine area are described in table 1. In general, the soils

had low pH (below 4.660.02 recorded in the REF soil) as well as

low conductivity values. Soil F1 displayed the lowest pHKCl (3.4)

and the highest conductivity value (290.33 mS cm21). Regarding

the content of organic matter (OM), and according to USEPA [38]

classification, soils were grouped into: i) low content (,2%) – soils

D2, E1and F3; ii) medium content (2%#OM,6%) – soils REF,

C1, C3, D1, D3, D4, E2, F1 and F2 soils and iii) high content

($6%) – soils C2, C4, E3, E4 and F4. Soil E4 presented the

highest organic matter content (19.7%) as well as the highest water

holding capacity (84.6%).

Total and extractable metal concentrations
Generally, the highest total concentrations of metals were

recorded in soils from transects D, E and F. Except for Al, Mn and

Fe, which were recorded in high concentrations in all the soils,

including the REF soil. When compared with some soil

benchmark values available, almost all the soils from transepts

C, D and F presented concentrations of arsenic well above the

EPA ECO-SSL (18 mg kg21) (a plants soil screening benchmark)

(http://rais.ornl.gov/) as well as above the HC5 value proposed

for this metalloid (5.63 mg kg21) by Jänsch et al. [39]. The HC5

values proposed by these authors were calculated based on EC50

values obtained for different species of animals, plants and

microbial processes in chronic tests. These results represent the

concentrations of the metals below which no more than 5% of the

species and/or microbial processes will show a detrimental effect

of 50%. This observation creates suspicions about the potential

phytoxicity of almost all the soils analyzed in this study, since

benchmark values for As were clearly surpassed, as previously

mentioned. However, it seemed that this element was particularly

available for plants especially in the soil F1, which showed the

highest concentration of As in calcium chloride extracts (Table 2).

The same calcium chloride extract obtained for soil D1, showed

the highest concentrations of P, Mn, Fe and Cu. In fact all the soils

from transect D and soil E1 had total concentrations of Cu, well

above the EPA ECO-SSL (70 mg kg21)) and the C5 value (55 mg

kg21) proposed by Jänsch et al. [39]. Soils D2 and F2 had total

concentrations of lead also above the soil screening benchmarks

mentioned (EPA Eco-SSL: 120 mg kg21; HC5: 163.5 mg kg21),

and the same was observed in terms of the total concentration of

zinc in soils D1, E1 and E4. Nevertheless, in all the other soils

(except D1 and F1), the extractable concentrations of metals were

not meaningful, except for Al. The lack of correlation between soil

total metal contents and the levels bioaccumulated by plants has

been pointed out by several authors. Subsequently, the use of

neutral salt solutions has been recommended based on the

assumption that the cations provided by these salts are able to

Table 1. General physical and chemical parameters measured
in soil samples collected in the Ervedosa mine area (average
6 STDEV): pHKCl, conductivity, MO -organic matter (%) and
WHCmax – maximum water holding capacity (%).

pHKCl

Conductivity(mS
cm21) OM (%) WRC (%)

REF 4.660.02 51.160.76 3.860.4 22.560.1

C1 3.860.02 35.760.41 4.460.4 38.660.6

C2 4.660.66 36.760.5 9.860.3 57.760.5

C3 4.060.01 25.861.34 5.660.3 40.162.3

C4 4.160.01 35.160.31 7.760.2 52.860.9

D1 4.060.01 34.064.40 4.460.0 62.5612.5

D2 4.460.01 19.563.64 1.360.1 8.960.1

D3 4.060.02 41.062.77 2.460.3 35.460.3

D4 4.460.02 12.260.41 4.960.1 23.360.1

E1 4.3 60.01 7.560.07 1.660.5 34.362.4

E2 4.360.00 20.060.29 5.460.3 40.861.8

E3 3.860.04 22.860.98 10.960.4 66.360.9

E4 3.860.01 40.067.76 19.760.3 84.662.1

F1 3.460.04 290.367.75 2.060.1 27.961.0

F2 3.660.05 54.3612.81 3.060.3 33.163.9

F3 4.060.01 16.360.33 1.560.1 31.860.4

F4 4.160.01 32.360.67 6.760.2 46.863.4

Highest values recorded for each parameter were highlighted with bold letter.
doi:10.1371/journal.pone.0059748.t001
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displace metals located on mineral surfaces, to the aqueous phase

[40], mimicking processes occurring in rhizosphere microenviron-

ment. In fact plants can make metal ions more available in the

rhizosphere, both increasing acidity with the support of proton

pumps localized in their plasma membranes and through the

active secretion of low-molecular mass compounds that function as

metal chelators [41]. The negative potential of plasma mem-

branes, the existence of Fe2+, Ca2+, and Zn2+ transporter channels

of low specificity and of intracellular binding sites for metals are

additional driving forces for metals uptake [41] and together they

could explain the toxicity of soils other than those with high

extractable concentrations of metals.

Lemna minor assay
IC50 values and corresponding 95% confidence limits for the

growth of L. minor, recorded after the exposure to the elutriates of

the different mine soils are described in Table 3. Only elutriates of

D1, D2, D3, E1, F1, F2 and F3 soils have significantly inhibited

the growth of this aquatic plant species. Nevertheless, soil elutriates

have displayed quite different toxicities with the lowest IC50 values

recorded in the first samples of transects D, E and F, which were

those collected near the mining and ore treatment area. The high

availability of As and Cu, was probably responsible for the high

toxicity of the elutriate from soil F1 and D1 to L. minor. The high

phytotoxicity of As results from its ability to mimic phosphorus,

Table 2. Average concentrations (6 STDEV) of metals in soils samples collected in the Ervedosa mine area, after calcium chloride
(0.01 M) and aqua regia extraction (total metal contents).

Al Pb P V Mn Fe Cu Zn As Sb Ba Sn

Aqua regia extraction (mg g21)

REF 14886.3 27.6 208.6 24.3 132.8 13722.7 26.0 37.4 61.3 0.3 35.8 1.8

C1 9700.0 26.3 199.8 13.5 114.8 22884.8 14.2 46.2 158.7 3.8 19.7 2.3

C2 1963.1 2.5 30.9 bdl 12.9 1152.7 1.2 bdl 0.1 0.1 4.2 0.7

C3 6943.8 21.4 304.0 8.6 53.6 18795.6 11.3 17.6 33.9 2.4 23.2 1.2

C4 865.2 1.2 16.2 bdl 5.8 628.8 1.1 bdl bdl bdl 1.7 0.4

D1 4281.7 34.8 4604.0 0.8 1448.3 33536.0 604.8 243.1 3163.5 2.5 13.7 2.5

D2 5056.5 215.7 1344.2 42.5 92.6 16047.8 140.2 68.6 867.6 2.5 31.2 5.5

D3 6916.2 50.2 753.0 36.1 199.6 17220.8 67.0 52.6 323.5 2.6 12.6 2.9

D4 17825.2 30.1 438.8 31.4 538.5 29942.0 128.8 93.5 255.2 2.6 30.6 3.3

E1 12777.5 20.4 223.4 47.6 735.5 25414.9 477.7 232.5 439.4 0.8 27.7 1.5

E2 13752.6 33.9 194.5 22.3 139.6 22676.5 28.6 58.1 68.9 0.8 32.2 3.3

E3 764.1 1.5 31.9 bdl 5.4 1334.4 1.1 bdl 0.3 bdl 1.8 bdl

E4 9675.9 82.7 1227.8 17.2 333.3 45944.2 44.3 461.5 367.4 7.4 97.6 16.2

F1 1084.7 79.2 323.5 bdl 18.0 8348.6 7.9 4.7 15251.8 66.0 61.2 69.7

F2 4044.7 144.7 267.8 17.1 37.2 22555.8 23.0 19.0 13742.9 195.4 46.8 82.1

F3 2099.4 56.0 299.1 1.7 17.7 9634.3 45.2 27.0 7969.1 32.4 30.8 32.7

F4 8754.2 27.4 231.3 12.9 208.7 18965.6 18.2 37.0 47.3 0.8 24.4 1.7

CaCl2 extraction (mg L21)

REF 0.70 0.00 0.01 bdl 0.15 0.06 0.00 0.04 0.00 bdl 0.17 bdl

C1 2.55 0.01 0.02 bdl 0.73 0.12 0.00 0.06 0.01 bdl 0.03 bdl

C2 1.63 0.01 0.01 bdl 3.07 0.12 0.00 0.09 0.00 bdl 0.14 bdl

C3 2.49 0.01 0.01 bdl 0.26 0.08 0.00 0.03 0.00 bdl 0.06 bdl

C4 3.19 0.01 0.02 bdl 0.66 0.22 0.01 0.03 0.00 bdl 0.09 bdl

D1 1.38 0.00 0.20 bdl 3.53 0.60 3.11 1.10 0.09 bdl 0.01 bdl

D2 1.50 0.00 0.04 bdl 0.44 0.09 0.11 0.07 0.02 bdl 0.01 bdl

D3 2.72 0.00 0.02 bdl 0.50 0.18 0.08 0.15 0.01 bdl 0.01 bdl

D4 2.10 0.00 0.05 bdl 0.60 0.33 0.18 0.19 0.01 bdl 0.06 bdl

E1 2.63 0.00 BDL bdl 0.24 0.04 0.55 0.29 0.00 bdl 0.06 bdl

E2 1.32 0.01 0.01 bdl 0.47 0.13 0.00 0.04 0.00 bdl 0.06 bdl

E3 1.46 0.01 BDL bdl 1.14 0.15 0.01 0.04 0.00 bdl 0.06 bdl

E4 1.06 0.00 BDL bdl 0.59 0.25 0.00 0.08 0.00 bdl 0.11 bdl

F1 0.81 0.01 0.06 bdl 0.04 0.07 0.01 0.01 77.49 bdl 0.25 bdl

F2 1.51 0.00 BDL bdl 0.16 0.14 0.01 0.03 0.32 bdl 0.03 bdl

F3 0.64 0.00 0.01 bdl 0.11 0.10 0.01 0.05 0.27 bdl 0.01 bdl

F4 0.63 0.01 0.17 bdl 0.60 0.42 0.01 1.89 0.03 bdl 0.26 bdl

Highest concentrations were highlighted with bold letter. BDL stands for below detection limit.
doi:10.1371/journal.pone.0059748.t002
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causing negative effects in plants metabolic activity [42]. In fact,

the concentration of As in the elutriate of the F1 soil was similar to

the EC50 value reported by Duester et al. [43] for As (V) and for L.

minor growth (82 mg L21: 95%CI = 76–87). Even though we have

not determined As speciation in our elutriates, this form of arsenic

is expected to occur at high concentrations, since As (III) tends to

oxidize to As (V) in aqueous suspensions. Copper is also a metal

very toxic to L. minor. Teisseire et al. [44] determined an IC50 of

0.16 mg L21, which was well below the extractable concentration

of Cu found for soils D1 and E1. As far as elutriates of soils D2,

D3, F2 and F3 are considered, their toxicity was probably related

with aluminum because it was the metal present at highest

concentration in the calcium chloride extracts. Nevertheless,

Radić et al. [45] have shown the ability of L. minor to tolerate

concentrations of Al up to 8.09 mg L21 due to their great ability to

up-regulate anti-oxidant defenses. Further, we cannot forget the

possible differences between metal concentrations extracted with

calcium chloride and those extracted with Steinberg medium that

were used to produce the soil elutriates tested with L. minor.

Complexation with organic components of the medium may have

promoted a greater availability of metals to the macrophyte.

Further, potential synergistic effects between all the metals in

elutriates, even at lower concentrations could not be ignored. The

known tolerance of L. minor and its ability to accumulate metals

[45] has supported the suggested use for remediation purposes.

However, in this study, L. minor was sensitive to different soil

elutriates, even with low concentration of metals.

More concerning in terms of risk assessment, was the inhibitory

effect on the growth of L. minor, recorded for soil elutriates 2 and 3

of the segments D and F. These segments are those extending from

the mining area to the River Tuela and parallel to the same river,

respectively. The results obtained suggest that there may be a poor

retention of the soil near the stream, which contributes for the

mobilization of a mixture of metals to the soil aqueous phase and

then to the aquatic ecosystem, with potential impact on its

biological populations. This suspicion justifies a more detailed

evaluation of this water stream, since a contamination, especially

with As, may be occurring, with potential risks to natural

communities and humans.

Zea mays assay
The assay was validated, since more than 50% of the seeds have

emerged in the OECD soil (control), as stated by the standard

protocol [25]. After confirming this, the natural REF soil was used

as control in the assay, and all the statistical comparisons were

made in order to minimize the influence of soil properties in the

physiological parameters evaluated. In fact no significant statistical

differences were recorded between the REF and the OECD soil

for almost all the parameters evaluated (except for fluorescence

parameters). No seed germination was recorded in the F soil

replicates, since the data available for all the other parameters are

unavailable for this soil.

In terms of the parameters recommended by the ISO 11269-2

protocol [8], no significant differences were recorded between the

REF and all the other soils, in the average number of emerged

seeds (F = 1.38; d.f. = 55, 76; p = 0.185). The average number of

emerged seeds varied between 42.5 and 80% (except for soil F1).

The lack of sensitivity of this parameter to soil contamination with

metals has already been reported by several authors [3,46,47].

Such fact results from the protection given to embryos by seed

coverage. However, this fact is species and metal dependent [48].

In this study it was possible to perceive, once more, that seed

germination was inhibited only when extremely high concentra-

tions of metals/metalloids (As in particular) had the potential to

mobilize to the soil aqueous phase, becoming bioavailable. This

reinforces the usefulness of this parameter only to identify worst-

case scenarios of contamination, and probably more important to

worst-case scenarios of metals bioavailability.

Concerning the average fresh and dry biomass above soil,

significant differences among plants exposed to the different mine

soils were recorded (F = 2.097; d.f. = 59,43; p = 0.029 and

F = 7.722; d.f. = 55, 38, p = 0.000, respectively). A significant

reduction in fresh weight was recorded only for plants exposed to

soil D1 (GHT: p = 0.025) when compared with the REF soil

(Figure 2). Plants from soils C4 and F3 (GHT: p = 0.017) displayed

a significant lower dry weight (Figure 2). The opposite was

recorded for plants exposed to soils C2 (GHT: p = 0.001) and C3

(GHT: p#0.001), which have displayed a substantial high dry

biomass when compared to plants exposed to the REF soil.

As far as parameters related with plants growth and develop-

ment, other than those included in the ISO protocol, are

considered, significant differences in the specific leaf area (SLA)

were recorded amongst plants exposed to the different mine soils

(F = 3.263; d.f. = 47, 34; p = 0.003). A significant increment in this

parameter was recorded for soils E2 (GHT: p#0.001) and E3

(GHT: p = 0.028) (Figure 3). In terms of biochemical parameters,

at the end of the assay, significant differences in total chlorophyll

a+b and carotenoids contents were recorded in leaves of plants

exposed to different mine soils (F = 6.576; d.f. = 50, 34; p#0.001

and F = 5.217; d.f. = 50, 34; p#0.001, respectively) (Figure 4).

Plants from soils C2 (GHT: p = 0.002), C3 (GHT: p = 0.001) and

F3 (GHT: p = 0.032) have displayed a significant higher content of

chlorophylls a+b, while the same soils plus soils D1 (GHT:

p = 0.019), F2 (GHT: p = 0.005) and F4 (GHT: p = 0.023) have

induced a significant increment in the content of carotenoids of

maize plants. Due to their different physical and chemical

properties, metals have three different mechanisms of toxicity:

Table 3. IC50 values and corresponding 95% confidence
limits for growth inhibition of L. minor exposed to elutriates of
different soil samples collected in the Ervedosa mine area. NT
stands for no toxicity.

IC50

REF NT

C1 NT

C2 NT

C3 NT

C4 NT

D1 2.77,4.28,5.79

D2 37.92,57.03,76.15

D3 60.21,87.36,114.5

D4 NT

E1 17.12,24.66,32.19

E2 NT

E3 NT

E4 NT

F1 0.19,0.22,0.25

F2 23.75,55.67,87.58

F3 31.93,45.18,58.43

F4 NT

doi:10.1371/journal.pone.0059748.t003
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production of reactive oxygen species (ROS), blocking of

functional groups of enzymes and displacement of metal ions

from biomolecules [16,41]. In turn, ROS induce oxidative damage

to pigments, proteins and lipids in the thylakoid membranes,

compromising the overall photosynthetic activity [19]. Conse-

quently, metals toxicity usually activates anti-oxidant defenses

[49]. Carotenoids are non-enzymatic antioxidants that protect

plants against photoxidation, protecting chlorophyll molecules

from oxidative damages [14,50]. Hence, the increment in the

production of carotenoids content may express a response of plants

to counteract the toxic effect of metals. The same occurrence was

reported for other plants species, exposed to different metals (e.g.

51) or to wastes rich in metals [52]. However, in plants exposed to

at least one Ervedosa mine soil (F3) such response was probably

insufficient since a significant reduction in biomass still occurred.

However, no significant lipid peroxidation was recorded. In fact,

despite the slight increase in the MDA content in tissues of plants

exposed to soils from transect C and also in some soils from

transect E and F, a significant increment was observed only in

plants exposed to soil D3 (Figure 5). Such observations indicate

that only in these plants were the physiological mechanisms not

efficient in counteracting the oxidative stress. As far as total

chlorophyll contents are again considered, our results do not

comply with the findings of other authors, reporting a decrease in

total chlorophyll content caused by metals stress [53,54], at least

for soil F3. Plants exposed to this soil have shown a significant

increment in total chlorophyll content despite the significant

reduction in their dry biomass. Nevertheless, this could have been

a punctual situation in which the plants have tried to adapt to

metal exposure by increasing chlorophyll synthesis. Nevertheless,

this is only an explanative hypothesis, requiring further confirma-

tion.

Several studies, reporting the physiological responses of plants to

metals stress, have shown that the amino acid proline usually

accumulates in response to metal/metalloid (As included) expo-

sures [21,53,54]. In fact proline has a central role in the ability of

plants to react to abiotic stress [21], since it acts as a mediator in

osmotic balance, protects macromolecules during dehydration and

acts as a hydroxyl radical scavenger [14]. In this study no changes

were recorded in this parameter, except for soil C1 (Figure 5).

Plants exposed to this soil showed a significant reduction in their

proline content (F = 3.895; d.f. = 62, 46; p#0.001; Dunnet:

p#0.001). Although contradicting general findings, Pavlı́k et al.

[21] have suggested that under As stress the biosynthesis of proline

could be inhibited, due to a preferred utilization of glutamate,

which in turns leads to the synthesis of phytochelatins. It was

shown that the synthesis of phytochelatins, also called class III

metallothioneins, is activated in plant cells after exposure to

different metals, as part of another important detoxification

mechanism [49].

Plants exposed to soils C3, D1 and F2 have also shown a

significant reduction in leaf water content (F = 3.282; d.f. = 63, 47;

p = 0.001; GHT: p = 0.003) (Figure 6). Since no significant

differences in terms of cells membrane permeability was observed

(F = 1.558; d.f. = 46, 30; p = 0.147) between plants exposed to the

different mine soils (Figure 6), we can suggest that the reduction in

Figure 2. Average fresh and dry weight. Average fresh and dry weight of plants (g FW and gDW) exposed to different soils collected in Ervedosa
mine area and to REF and OECD artificial soil. The error bars represent the standard deviation.
doi:10.1371/journal.pone.0059748.g002

Figure 3. Specific leaf area. Specific leaf area (SLA) of plants (cm2

g21 DW) exposed to different soils collected in Ervedosa mine area and
to REF and OECD artificial soil. The error bars represent the standard
deviation and * correspond to significant differences towards the REF
soil.
doi:10.1371/journal.pone.0059748.g003
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water content in plants exposed to soil F3, was probably due to an

inhibition in root growth with subsequent reduction in water

uptake. Different authors [55,56] have reported the inhibition of

roots growth caused by metals/metalloids like As and Cu, in

Triticum aestivum and Helianthus annuus, respectively. Nevertheless,

this parameter was not assessed in this study.

An efficient photosynthesis is crucial for plant survival and

fitness [19], and chlorophyll fluorescence can give information

about the state of the photosynthetic apparatus and, of photosys-

tem II [20] in particular, which is considered to be the most

vulnerable component. In terms of chlorophyll fluorescence

parameters measured in this study, namely Fv/Fm ratio

(F = 5.058; d.f. = 121, 105; p#0.001) and WPSII (F = 4.335;

d.f. = 122, 106; p#0.001) significant differences among the plants

exposed to the different mine soils were recorded for both

parameters (Figure 7). The Fv/Fm ratio, which measures the

photochemical efficiency of photosystem II (PSII) in the dark-

adapted state, was significantly reduced in plants exposed to soil

C3 (GHT: p = 0.006), D4 (p = 0.009), E1 (GHT: p#0.001), E3

(GHT: p = 0.011) and F2 (p#0.001), when compared to the

reference soil (Figure 7). In all these soils the plants have displayed

average Fv/Fm ratios below 0.80. According to Björkman and

Demming [57] the Fv/Fm ratio is almost constant for different

plant species, under non-stressed conditions and, usually varies

between 0.80–0.86. Values below this range suggest impairments

in the photosynthetic apparatus. This possibility of damages was

further reinforced for soils D4 (GHT: p#0.001), E1 (GHT:

p#0.001), F2 (GHT: p = 0.020), which has also shown a

significant reduction in WPSII values (Figure 7). As it was

demonstrated by Küpper et al. [58], different metallic cations

may replace the central magnesium ion of the chlorophyll

molecules, resulting in ‘‘heavy metals substituted chlorophylls (hm-chls)’’

Figure 4. Chlorophyll a+b and carotenoids. Chlorophyll a+b (mmol g21 FW) and caroptenoids in plants (mmol g21 FW) exposed to different soils
collected in Ervedosa mine area and to REF and OECD artificial soil. The error bars represent the standard deviation and * correspond to significant
differences towards the REF soil.
doi:10.1371/journal.pone.0059748.g004

Figure 5. Malondialdehyde and proline content. Malondialdehyde (MDA) (nmol g21 FW) and proline content in plants (mmol g21 FW) exposed
to different soils collected in Ervedosa mine area and to REF and OECD artificial soil. The error bars represent the standard deviation and * correspond
to significant differences towards the REF soil.
doi:10.1371/journal.pone.0059748.g005

New Endpoints in Standard Assays with Plants

PLOS ONE | www.plosone.org 9 April 2013 | Volume 8 | Issue 4 | e59748



reducing light harvesting by these molecules and, subsequently,

reducing their fluorescence yields and compromising photosyn-

thesis. Further, these authors have proved that the rate of

substitution reactions varies with light intensity. At lower

intensities hm-chls are more stable, and plants could appear vital,

even when dead. Such fact could explain why a slight decrease in

fluorescence parameters was recorded, at least for plants exposed

to some soils, even without a concomitant reduction in the total

chlorophyll content. Although the light intensity, to which plants

were exposed during the assay, was within the range recom-

mended by the standard protocol, the levels were lower than those

recorded under a normal sunny day, in temperate latitudes.

The germination and early growth of plants are parameters that

cannot be neglected in the evaluation of soils phytotoxicity since

they integrate the overall effects of stress [46]. However, some

authors suggested the evaluation of other parameters, at lower

levels of organization, which may be more sensitive to the impact

of chemicals, allowing both the early detection of physiological

effects and the comprehension of their mechanisms of action

[59,60,61,62]. In this study, the key biomarkers evaluated in the

Zea mays seedlings were parameters related with plant develop-

ment, photosynthetic activity, water balance, the synthesis of

secondary metabolites, oxidative stress, and detoxification mech-

anisms. Table 4 summarizes the results, presenting the significant

effects detected for each parameter evaluated in Z. mays plants

exposed to the different soils. As it was possible to perceive by grey

columns, five additional soils (C1, D2, D4, E1, F2) induced stress

on Z. mays with the evaluation of other plant performance

parameters. Fluorescence parameters were the more sensitive and

those with a greater contribution to detect false negative results in

terms of phytotoxicity. In addition, elutriates of three of these soils

(D2, E1 and F2) have also proved to be toxic to L. minor. Hence,

Figure 6. Water content and membrane permeability. Water content (%) and membrane permeability (% electrolytes) in plants exposed to
different soils collected in Ervedosa mine area and to REF and OECD artificial soil. The error bars represent the standard deviation and * correspond to
significant differences towards the REF soil.
doi:10.1371/journal.pone.0059748.g006

Figure 7. Maximum quantum yield and efficiency of photosystem II. Maximum quantum yield or the maximum photosynthetic efficiency of
photosystem II (Fv/Fm) and efficiency of photosystem II (WPSII) in plants exposed to different soils collected in Ervedosa mine area and to REF and
OECD artificial soil. The error bars represent the standard deviation and * correspond to significant differences towards the REF soil.
doi:10.1371/journal.pone.0059748.g007
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this new evaluation of phytotoxicity contributes to increase the

evidence of risks posed by these soils. A great number of

phytotoxic soils conform to previsions based on comparisons of

soils total metal contents with soil benchmark values.

In summary, we can conclude that the inclusion of other

physiological (chlorophyll fluorescence and/or stress oxidative

parameters) in standard protocols for assays with terrestrial plants

can improve their sensitivity, contributing for a more accurate

evaluation of risks posed by contaminated soils. Chlorophyll

fluorescence parameters, in particular, are non destructive and

their measurement does not require specialized skills. However, a

similar evaluation should be made, previously, for soils with

different kinds of contamination.
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