1,216 research outputs found

    Factors influencing the effectiveness of serious gaming in the field of vocational orientation

    Get PDF
    This study investigates the effectiveness of the serious game like2be, which has been developed to support the individual career orientation process of adolescents by broadening their occupational horizon. In this paper, we present results from an intervention study with n = 809 adolescents in Swiss schools at the lower secondary education level. To analyze the extent to which cognitive, affective, and motivational factors are stimulated and what influence they have on expanding knowledge about occupations (measured learning outcome), we applied confirmatory factor analysis, multiple linear regression, and a structural equation model. The results indicate that the stimulation of cognitive processes through serious gaming has a statistically significant impact on learning outcome, although such factors as enjoyment, flow experience, or self-perceived benefits in playing like2be did not significantly impact gain in knowledge about occupations

    The potential of Serious Games to foster learning among children and adolescents with disabilities: A systematic review

    Get PDF
    Serious Games for children and adolescents with disabilities can enhance their learning and respond to their needs in an inclusive educational setting. The aim of this systematic review is to analyze the potential of Serious Games for children and young people with disabilities, thereby providing an overview of effective Serious Games for schools and practitioners in the field of inclusive education. For this purpose, a systematic review of empirical literature found in the database Education Resources Information Centre (ERIC) was conducted, applying a qualitative content analysis. Findings from the 21 reviewed quantitative and qualitative studies indicate that Serious Games provide effective support for achieving learning objectives in certain school subjects and facilitate optimal conditions for learning. We found that Serious Games have strong potential and can make an important contribution to the inclusion of children and adolescents with disabilities in school

    Career Choice With the Serious Game Like2be

    Get PDF
    Choosing a career is an important biographical event for adolescents. Toward the end of compulsory education, they must decide which career path they want to pursue. The serious game like2be was developed to support adolescents in this individual career choice process. In a quasi-experimental intervention study with 809 adolescents, like2be was evaluated for its effectiveness in career choice classes at the lower secondary level. In addition, a teaching concept for the application of the serious game which included additional teaching materials was analyzed. The data show that like2be is an effective medium for broadening personal career choice horizons, especially when it is pedagogically well-founded and integrated into career choice classes. Although the effectiveness of like2be in stimulating intensive reflection on one's own vocational aptitude or a gender-sensitive attitude towards occupations is limited, the present study shows that like2be has major potential for supporting the process of career choice among adolescents

    The QCD equation of state for two flavours at non-zero chemical potential

    Full text link
    We present results of a simulation of 2 flavour QCD on a 163×416^3\times4 lattice using p4-improved staggered fermions with bare quark mass m/T=0.4m/T=0.4. Derivatives of the thermodynamic grand canonical partition function Z(V,T,μu,μd)Z(V,T,\mu_u,\mu_d) with respect to chemical potentials μu,d\mu_{u,d} for different quark flavours are calculated up to sixth order, enabling estimates of the pressure and the quark number density as well as the chiral condensate and various susceptibilities as functions of μu,d\mu_{u,d} via Taylor series expansion. Results are compared to high temperature perturbation theory as well as a hadron resonance gas model. We also analyze baryon as well as isospin fluctuations and discuss the relation to the chiral critical point in the QCD phase diagram. We moreover discuss the dependence of the heavy quark free energy on the chemical potential.Comment: 4 pages, 7 figures, talk presented at Quark Matter 2005, Budapes

    Ramsey interferometry with an atom laser

    Full text link
    We present results on a free-space atom interferometer operating on the first order magnetically insensitive |F=1,mF=0> -> |F=2,mF=0> transition of Bose-condensed 87Rb atoms. A pulsed atom laser is output-coupled from a Bose-Einstein condensate and propagates through a sequence of two internal state beam splitters, realized via coherent Raman transitions between the two interfering states. We observe Ramsey fringes with a visibility close to 100% and determine the current and the potentially achievable interferometric phase sensitivity. This system is well suited to testing recent proposals for generating and detecting squeezed atomic states.Comment: published version, 8 pages, 3 figure

    Dynamical coupled-channel approaches on a momentum lattice

    Get PDF
    Dynamical coupled-channel approaches are a widely used tool in hadronic physics that allow to analyze different reactions and partial waves in a consistent way. In such approaches the basic interactions are derived within an effective Lagrangian framework and the resulting pseudo-potentials are then unitarized in a coupled-channel scattering equation. We propose a scheme that allows for a solution of the arising integral equation in discretized momentum space for periodic as well as twisted boundary conditions. This permits to study finite size effects as they appear in lattice QCD simulations. The new formalism, at this stage with a restriction to S-waves, is applied to coupled-channel models for the sigma(600), f0(980), and a0(980) mesons, and also for the Lambda(1405) baryon. Lattice spectra are predicted.Comment: 7 pages, 4 figure

    The role of the N*(1535) resonance and the pi^- p --> KY amplitudes in the OZI forbidden pi N --> phi N reaction

    Get PDF
    We study the pi N --> phi N reaction close to the phi N threshold within the chiral unitary approach, by combining the pi^- p --> K^+ Sigma^-, pi^- p --> K^0 Sigma^0 and pi^- p --> K^0 Lambda amplitudes with the coupling of the phi to the K components of the final states of these reactions via quantum loops. We obtain a good agreement with experiment when the dominant pi^- p --> K^0 Lambda amplitude is constrained with its experimental cross section. We also evaluate the coupling of the N*(1535) to phi N and find a moderate coupling as a consequence of partial cancellation of the large KY components of the N*(1535). We also show that the N*(1535) pole approximation is too small to reproduce the measured cross section for the pi N --> phi N reaction.Comment: 10 pages, 6 figure

    Characteristics of ferroelectric-ferroelastic domains in N{\'e}el-type skyrmion host GaV4_4S8_8

    Get PDF
    GaV4_4S8_8 is a multiferroic semiconductor hosting N{\'e}el-type magnetic skyrmions dressed with electric polarization. At Ts_s = 42K, the compound undergoes a structural phase transition of weakly first-order, from a non-centrosymmetric cubic phase at high temperatures to a polar rhombohedral structure at low temperatures. Below Ts_s, ferroelectric domains are formed with the electric polarization pointing along any of the four <111>\left< 111 \right> axes. Although in this material the size and the shape of the ferroelectric-ferroelastic domains may act as important limiting factors in the formation of the N{\'e}el-type skyrmion lattice emerging below TC_C=13\:K, the characteristics of polar domains in GaV4_4S8_8 have not been studied yet. Here, we report on the inspection of the local-scale ferroelectric domain distribution in rhombohedral GaV4_4S8_8 using low-temperature piezoresponse force microscopy. We observed mechanically and electrically compatible lamellar domain patterns, where the lamellae are aligned parallel to the (100)-type planes with a typical spacing between 100 nm-1.2 μ\mum. We expect that the control of ferroelectric domain size in polar skyrmion hosts can be exploited for the spatial confinement and manupulation of N{\'e}el-type skyrmions

    Helicity Amplitudes of the Lambda(1670) and two Lambda(1405) as dynamically generated resonances

    Full text link
    We determine the helicity amplitudes A_1/2 and radiative decay widths in the transition Lambda(1670) to gamma Y (Y=Lambda or Sigma^0). The Lambda(1670) is treated as a dynamically generated resonance in meson-baryon chiral dynamics. We obtain the radiative decay widths of the Lambda(1670) to gamma Lambda as 3 \pm 2 keV and to gamma Sigma^0 as 120 \pm 50 keV. Also, the Q^2 dependence of the helicity amplitudes A_1/2 is calculated. We find that the K Xi component in the Lambda(1670) structure, mainly responsible for the dynamical generation of this resonance, is also responsible for the significant suppression of the decay ratio Gamma_{gamma Lambda}/Gamma_{gamma Sigma^0}. A measurement of the ratio would, thus, provide direct access to the nature of the Lambda(1670). To compare the result for the Lambda(1670), we calculate the helicity amplitudes A_1/2 for the two states of the Lambda(1405). Also, the analytic continuation of Feynman parameterized integrals of more complicated loop amplitudes to the complex plane is developed which allows for an internally consistent evaluation of A_1/2.Comment: 15 pages, 8 figure

    Quantum projection noise limited interferometry with coherent atoms in a Ramsey type setup

    Full text link
    Every measurement of the population in an uncorrelated ensemble of two-level systems is limited by what is known as the quantum projection noise limit. Here, we present quantum projection noise limited performance of a Ramsey type interferometer using freely propagating coherent atoms. The experimental setup is based on an electro-optic modulator in an inherently stable Sagnac interferometer, optically coupling the two interfering atomic states via a two-photon Raman transition. Going beyond the quantum projection noise limit requires the use of reduced quantum uncertainty (squeezed) states. The experiment described demonstrates atom interferometry at the fundamental noise level and allows the observation of possible squeezing effects in an atom laser, potentially leading to improved sensitivity in atom interferometers.Comment: 8 pages, 8 figures, published in Phys. Rev.
    corecore