279 research outputs found

    The Toxoplasma gondii plastid replication and repair enzyme complex, PREX

    Get PDF
    A plastid-like organelle, the apicoplast, is essential to the majority of medically and veterinary important apicomplexan protozoa including Toxoplasma gondii and Plasmodium. The apicoplast contains multiple copies of a 35 kb genome, the replication of which is dependent upon nuclear-encoded proteins that are imported into the organelle. In P. falciparum an unusual multi-functional gene, pfprex, was previously identified and inferred to encode a protein with DNA primase, DNA helicase and DNA polymerase activities. Herein, we report the presence of a prex orthologue in T. gondii. The protein is predicted to have a bi-partite apicoplast targeting sequence similar to that demonstrated on the PfPREX polypeptide, capable of delivering marker proteins to the apicoplast. Unlike the P. falciparum gene that is devoid of introns, the T. gondii prex gene carries 19 introns, which are spliced to produce a contiguous mRNA. Bacterial expression of the polymerase domain reveals the protein to be active. Consistent with the reported absence of a plastid in Cryptosporidium species, in silico analysis of their genomes failed to demonstrate an orthologue of prex. These studies indicate that prex is conserved across the plastid-bearing apicomplexans and may play an important role in the replication of the plastid genome

    The Toxoplasma gondii Plastid replication and Repair Enzyme Complex, PREX

    Get PDF
    A plastid-like organelle, the apicoplast, is essential to the majority of medically and veterinary important apicomplexan protozoa including Toxoplasma gondii and Plasmodium. The apicoplast contains multiple copies of a 35 kb genome, the replication of which is dependent upon nuclear-encoded proteins that are imported into the organelle. In P. falciparum an unusual multi-functional gene, pfprex, was previously identified and inferred to encode a protein with DNA primase, DNA helicase and DNA polymerase activities. Herein, we report the presence of a prex orthologue in T. gondii. The protein is predicted to have a bi-partite apicoplast targeting sequence similar to that demonstrated on the PfPREX polypeptide, capable of delivering marker proteins to the apicoplast. Unlike the P. falciparum gene that is devoid of introns, the T. gondii prex gene carries 19 introns, which are spliced to produce a contiguous mRNA. Bacterial expression of the polymerase domain reveals the protein to be active. Consistent with the reported absence of a plastid in Cryptosporidium species, in silico analysis of their genomes failed to demonstrate an orthologue of prex. These studies indicate that prex is conserved across the plastid-bearing apicomplexans and may play an important role in the replication of the plastid genom

    Involvement of Plasmodium falciparum protein kinase CK2 in the chromatin assembly pathway

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein kinase CK2 is a pleiotropic serine/threonine protein kinase with hundreds of reported substrates, and plays an important role in a number of cellular processes. The cellular functions of <it>Plasmodium falciparum </it>CK2 (PfCK2) are unknown. The parasite's genome encodes one catalytic subunit, PfCK2α, which we have previously shown to be essential for completion of the asexual erythrocytic cycle, and two putative regulatory subunits, PfCK2β1 and PfCK2β2.</p> <p>Results</p> <p>We now show that the genes encoding both regulatory PfCK2 subunits (PfCK2β1 and PfCK2β2) cannot be disrupted. Using immunofluorescence and electron microscopy, we examined the intra-erythrocytic stages of transgenic parasite lines expressing hemagglutinin (HA)-tagged catalytic and regulatory subunits (HA-CK2α, HA-PfCK2β1 or HA-PfCK2β2), and localized all three subunits to both cytoplasmic and nuclear compartments of the parasite. The same transgenic parasite lines were used to purify PfCK2β1- and PfCK2β2-containing complexes, which were analyzed by mass spectrometry. The recovered proteins were unevenly distributed between various pathways, with a large proportion of components of the chromatin assembly pathway being present in both PfCK2β1 and PfCK2β2 precipitates, implicating PfCK2 in chromatin dynamics. We also found that chromatin-related substrates such as nucleosome assembly proteins (Naps), histones, and two members of the Alba family are phosphorylated by PfCK2α <it>in vitro</it>.</p> <p>Conclusions</p> <p>Our reverse-genetics data show that each of the two regulatory PfCK2 subunits is required for completion of the asexual erythrocytic cycle. Our interactome study points to an implication of PfCK2 in many cellular pathways, with chromatin dynamics being identified as a major process regulated by PfCK2. This study paves the way for a kinome-wide interactomics-based approach to elucidate protein kinase function in malaria parasites.</p

    An antigen encoded by the latency-associated transcript in neuronal cell cultures latently infected with herpes simplex virus type 1.

    Get PDF
    During latent infection of neurons with herpes simplex virus type 1, viral transcription is restricted to the latency-associated transcripts (LATs). These RNAs contain open reading frames, but detection of a protein encoded by the LATs has not been reported. We used immunocytochemical techniques to demonstrate that an antiserum directed against a bacterially expressed fusion protein containing part of a LAT-encoded polypeptide recognized an antigen present in primary neurons latently infected in vitro. This antigen (called LAA, for latency-associated antigen) was not detected in mock-infected neurons, in productively infected Vero cells, or in neurons latently infected with a mutant virus carrying a deletion in the LAT gene. By Western immunoblot analysis, we demonstrated the presence of a protein with an apparent molecular mass of 80 kDa recognized by the anti-LAA antiserum in latently infected neurons

    Toxoplasma and Plasmodium protein kinases: roles in invasion and host cell remodelling

    Get PDF
    Some apicomplexan parasites have evolved distinct protein kinase families to modulate host cell structure and function. Toxoplasma gondii rhoptry protein kinases and pseudokinases are involved in virulence and modulation of host cell signalling. The proteome of Plasmodium falciparum contains a family of putative kinases called FIKKs, some of which are exported to the host red blood cell and might play a role in erythrocyte remodelling. In this review we will discuss kinases known to be critical for host cell invasion, intracellular growth and egress, focusing on (i) calcium-dependent protein kinases and (ii) the secreted kinases that are unique to Toxoplasma (rhoptry protein kinases and pseudokinases) and Plasmodium (FIKKs)

    The complement of protein kinases of the microsporidium Encephalitozoon cuniculi in relation to those of Saccharomyces cerevisiae and Schizosaccharomyces pombe.

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.BACKGROUND: Microsporidia, parasitic fungi-related eukaryotes infecting many cell types in a wide range of animals (including humans), represent a serious health threat in immunocompromised patients. The 2.9 Mb genome of the microsporidium Encephalitozoon cuniculi is the smallest known of any eukaryote. Eukaryotic protein kinases are a large superfamily of enzymes with crucial roles in most cellular processes, and therefore represent potential drug targets. We report here an exhaustive analysis of the E. cuniculi genomic database aimed at identifying and classifying all protein kinases of this organism with reference to the kinomes of two highly-divergent yeast species, Saccharomyces cerevisiae and Schizosaccharomyces pombe. RESULTS: A database search with a multi-level protein kinase family hidden Markov model library led to the identification of 29 conventional protein kinase sequences in the E. cuniculi genome, as well as 3 genes encoding atypical protein kinases. The microsporidian kinome presents striking differences from those of other eukaryotes, and this minimal kinome underscores the importance of conserved protein kinases involved in essential cellular processes. Approximately 30% of its kinases are predicted to regulate cell cycle progression while another approximately 28% have no identifiable homologues in model eukaryotes and are likely to reflect parasitic adaptations. E. cuniculi lacks MAP kinase cascades and almost all protein kinases that are involved in stress responses, ion homeostasis and nutrient signalling in the model fungi S. cerevisiae and S. pombe, including AMPactivated protein kinase (Snf1), previously thought to be ubiquitous in eukaryotes. A detailed database search and phylogenetic analysis of the kinomes of the two model fungi showed that the degree of homology between their kinomes of approximately 85% is much higher than that previously reported. CONCLUSION: The E. cuniculi kinome is by far the smallest eukaryotic kinome characterised to date. The difficulty in assigning clear homology relationships for nine out of the twentynine microsporidian conventional protein kinases despite its compact genome reflects the phylogenetic distance between microsporidia and other eukaryotes. Indeed, the E. cuniculi genome presents a high proportion of genes in which evolution has been accelerated by up to four-fold. There are no orthologues of the protein kinases that constitute MAP kinase pathways and many other protein kinases with roles in nutrient signalling are absent from the E. cuniculi kinome. However, orthologous kinases can nonetheless be identified that correspond to members of the yeast kinomes with roles in some of the most fundamental cellular processes. For example, E. cuniculi has clear orthologues of virtually all the major conserved protein kinases that regulate the core cell cycle machinery (Aurora, Polo, DDK, CDK and Chk1). A comprehensive comparison of the homology relationships between the budding and fission yeast kinomes indicates that, despite an estimated 800 million years of independent evolution, the two model fungi share approximately 85% of their protein kinases. This will facilitate the annotation of many of the as yet uncharacterised fission yeast kinases, and also those of novel fungal genomes.Published versio

    Nonstructural protein of parvoviruses B19 and minute virus of mice controls transcription

    Get PDF
    The genome of the human parvovirus B19 contains a transcriptional promoter (BP06) at map position 6, upstream from the nonstructural protein genes. By cotransfecting HeLa cells with this promoter cloned before the chloramphenicol acetyltransferase (CAT) gene together with a plasmid containing almost the whole B19 genome, we showed that BP06 is transactivated by a B19 gene product. The transactivating viral protein was identified as the nonstructural protein NS-1. NS-1 synthesized in a wheat germ extract specifically stimulates transcription from BP06 in vitro. NS-1 of the minute virus of mice (MVM) activates the analogous MVM promoter, MP04. NS-1, therefore, has a positive feedback effect on the activity of its own promoter. Moreover, NS-1 of MVM activates the human BP06. We have identified, in the genome of B19, a second transcriptional promoter activity at map position 44, before the capsid protein genes. This promoter, BP44, was identified by cloning fragments of B19 DNA upstream of the CAT gene, transfecting the DNA into HeLa cells, and measuring CAT expression. The strength of the BP44 promoter is similar to that of the capsid gene promoter, MP39, of MVM. In (nonpermissive) HeLa cells, the BP44 promoter is not activated by NS-1. Thus, the BP06 promoter apparently does not determine the tissue specificity of B19 virus but BP44 could do so

    Minute virus of mice non-structural protein NS-1 is necessary and sufficient for trans-activation of the viral P39 promoter

    Get PDF
    The genome of the autonomous parvovirus minute virus of mice (MVM) is organized in two overlapping transcription units: the genes coding for the two non-structural proteins (NS-1 ad NS-2) are transcribed from a promoter (P04) located at map unit 4, whereas the promoter controlling the capsid protein genes (P39) lies at map unit 39. We studied the effect of viral proteins on the activity of the P39 promoter in vivo. By site-directed mutagenesis we constructed clones encoding only one of the two NS proteins. The activity of the P39 promoter was measured in HeLa or EL-4 cells transfected with these clones, either by an RNase protection assay or by following the expression of a reporter gene, CAT (which codes for chloramphenicol acetyltransferase), placed under the control of this promoter. We found that the P39 promoter of strain MVMi is activated in trans by a viral gene product, and evidence to suggest that NS-1 is the only viral gene product responsible for this trans-activation. We also determined that the mechanism of trans-activation is very rapid, since all species of viral mRNAs appear together in non-synchronized infected EL-4 cells within a 2 h interval

    Nucleoprotein complexes of minute virus of mice have a distinct structure different from that of chromatin

    Get PDF
    We studied the structure of viral nucleoprotein complexes extracted from the nuclei of mouse cells infected with the immunosuppressive strain of the minute virus of mice (MVMi). Two types of complex were detected, with sedimentation coefficients of about 110 and 40S. The complexes sedimenting at 110S contained single-stranded MVMi DNA as well as a second form of viral DNA which apparently had a heat-sensitive secondary structure. The 110S peak also contained proteins which coelectrophoresed with the MVMi capsid proteins. Complexes sedimenting at 40S contained the double-stranded replicative form of MVMi DNA. These complexes sedimented faster than did the pure replicative form DNA (15S), but more slowly than cellular chromatin fragments containing DNA of the same length. They incorporated labeled deoxynucleoside triphosphate in vitro into the replicative form DNA. We investigated the structure of MVMi nucleoprotein complexes in the following ways. Nuclei of MVMi-infected cells were digested with staphylococcal nuclease, and the resulting DNA fragments were electrophoresed, transferred to nitrocellulose, and hybridized first with labeled MVMi DNA and then with cellular DNA. A nucleosomal repeat pattern was seen with the cellular DNA probe but not with the MVMi DNA probe. The DNA in MVMi nucleoprotein complexes was cross-linked with psoralen, purified, denatured, and examined with an electron microscope. Bubbles, indicating the presence of proteins, were seen in the MVMi DNA. The length of the DNA in the bubbles was 90 +/- 29 nucleotides. On the other hand, nucleosomes protected 160 base pairs from cross-linking by psoralen. The MVMi nucleoprotein complexes thus have a distinct structure which is different from that of chromatin
    corecore