85 research outputs found

    Flood characteristic and fluid rock interactions of a supercritical CO2, brine, rock system: South West Hub, Western Australia

    Get PDF
    Chemical and/or physical interactions between the storage rock and injected and in-situ created solutes are expected to occur during many underground CO2 storage projects. The intensity of the reactions, however, depends on the abundance of susceptible minerals (e.g. carbonates, clays) in the pore space of the host rock. Such interactions may impact on the multiphase flow characteristics of the underground fluids-rock system over short as well as long time frames. In this research the in-situ multiphase flow characteristics of four sandstone samples have been investigated using a set of laboratory measurements. The samples tested were taken from the Wonnerup Member of the Triassic Lesueur Sandstone which is under consideration as a storage formation in the South-West Hub CO2 geo-sequestration site in Western Australia. All the samples tested show favourable characteristics in terms of storage capacity in the form of residual capillary trapping with residual CO2 saturation varying between 23% and 43%. They underwent a degree of alteration to their petrophysical characteristics which was most significantly pronounced in the case of their absolute gas permeability which showed drops of 25%–60% in the post-flood samples. Formation damage by fines migration is proposed as a mechanism for the observed reduction in permeability. The fines are believed to have originated from the kaolinite particles present in the pore space of the samples

    Measuring Ultrasonic Characterisation to Determine the Impact of Toc and the Stress Field on Shale Gas Anisotropy

    Get PDF
    While the majority of natural gas is produced from conventional sources, there is significant growth from unconventional sources, including shale-gas reservoirs. To produce gas economically, candidate shale typically requires a range of characteristics, including a relatively high total organic carbon (TOC) content, and it must be gas mature. Mechanical and dynamic elastic properties are also important shale characteristics that are not well understood as there have been a limited number of investigations of well-preserved samples. In this study, the elastic properties of shale samples are determined by measuring wave velocities. Arrays of ultrasonic transducers are used to measure five independent wave velocities, which are used to calculate the elastic properties of the shale. The results indicated that for the shale examined in this research, P- and S-wave velocities vary depending on the isotropic stress conditions with respect to the fabric and TOC content. It was shown that the isotropic stress significantly impacts velocity. In addition, S-wave anisotropy was significantly affected by increasing stress anisotropy. Stress orientation, with respect to fabric orientation, was found to be an important influence on the degree of anisotropy of the dynamic elastic properties in the shale. Furthermore, the relationship between acoustic impedance (AI) and TOC was established for all the samples

    Physical properties of Mesozoic sedimentary rocks from the Perth Basin, Western Australia

    Get PDF
    The Perth Basin (PB) hosts important aquifers within the Yarragadee Formation and adjacent geological formations with potential for economic exploitation by both geothermal energy and carbon capture and sequestration. Published studies on the reservoir quality of the sedimentary units of the PB are very few. This study reports some petrophysical and lithological characteristics of the sedimentary units of interest for geothermal and geosequestration scenarios and help interpolation toward non-sampled intervals. A new fluvial-dominated lithofacies scheme was developed for the Mesozoic stratigraphy from four wells drilled in the central PB (Pinjarra-1, Cockburn-1, Gingin-1 and Gingin-2) based on grainsize, sorting, sedimentary structures and colour that relate to the environment of deposition. Systematic laboratory measurements of permeability, porosity, and thermal conductivity were conducted on core samples to investigate a variety of lithofacies and depths from these wells. Empirical correlations are established among the different physical properties, indicating encouraging relationships for full PB basin interpolation such as between porosity and permeability, when the samples are grouped into ‘hydraulic units’ defined by a ‘flow zone indicator’ parameter. The common principal controls on the PB thermal conductivity are the pore space arrangement and mineralogical content, which are strongly lithofacies-specific. Therefore, the lithofacies type could be a good first-order discriminator for describing spatial variations of thermal conductivity and then estimate their flow zone indicator

    Generation of amorphous carbon and crystallographic texture during low-temperature subseismic slip in calcite fault gouge

    Get PDF
    Identification of the nano-scale to micro-scale mechanochemical processes occurring during fault slip is of fundamental importance to understand earthquake nucleation and propagation. Here we explore the micromechanical processes occurring during fault nucleation and slip at subseismic rates (∼3 × 10−6 m s–1) in carbonate rocks. We experimentally sheared calcite-rich travertine blocks at simulated upper crustal conditions, producing a nano-grained fault gouge. Strain in the gouge is accommodated by cataclastic comminution of calcite grains and concurrent crystal-plastic deformation through twinning and dislocation glide, producing a crystallographic preferred orientation (CPO). Continued wear of fine-grained gouge particles results in the mechanical decomposition of calcite and production of amorphous carbon. We show that CPO and the production of amorphous carbon, previously attributed to frictional heating and weakening during seismic slip, can be produced at low temperature during stable slip at subseismic rates without slip weakening

    The puzzling issue of silica toxicity: are silanols bridging the gaps between surface states and pathogenicity?

    Get PDF
    Background: Silica continues to represent an intriguing topic of fundamental and applied research across various scientific fields, from geology to physics, chemistry, cell biology, and particle toxicology. The pathogenic activity of silica is variable, depending on the physico-chemical features of the particles. In the last 50 years, crystallinity and capacity to generate free radicals have been recognized as relevant features for silica toxicity. The ‘surface’ also plays an important role in silica toxicity, but this term has often been used in a very general way, without defining which properties of the surface are actually driving toxicity. How the chemical features (e.g., silanols and siloxanes) and configuration of the silica surface can trigger toxic responses remains incompletely understood. Main body: Recent developments in surface chemistry, cell biology and toxicology provide new avenues to improve our understanding of the molecular mechanisms of the adverse responses to silica particles. New physicochemical methods can finely characterize and quantify silanols at the surface of silica particles. Advanced computational modelling and atomic force microscopy offer unique opportunities to explore the intimate interactions between silica surface and membrane models or cells. In recent years, interdisciplinary research, using these tools, has built increasing evidence that surface silanols are critical determinants of the interaction between silica particles and biomolecules, membranes, cell systems, or animal models. It also has become clear that silanol configuration, and eventually biological responses, can be affected by impurities within the crystal structure, or coatings covering the particle surface. The discovery of new molecular targets of crystalline as well as amorphous silica particles in the immune system and in epithelial lung cells represents new possible toxicity pathways. Cellular recognition systems that detect specific features of the surface of silica particles have been identified. Conclusions: Interdisciplinary research bridging surface chemistry to toxicology is progressively solving the puzzling issue of the variable toxicity of silica. Further interdisciplinary research is ongoing to elucidate the intimate mechanisms of silica pathogenicity, to possibly mitigate or reduce surface reactivity. Keywords: Silica, Silicosis, Lung cancer, Auto-immune diseases, Surface reactivity, Silanol, Coating, Modelling, Spectroscopy, Atomic force microscop

    The puzzling issue of silica toxicity: Are silanols bridging the gaps between surface states and pathogenicity?

    Get PDF
    Background: Silica continues to represent an intriguing topic of fundamental and applied research across various scientific fields, from geology to physics, chemistry, cell biology, and particle toxicology. The pathogenic activity of silica is variable, depending on the physico-chemical features of the particles. In the last 50 years, crystallinity and capacity to generate free radicals have been recognized as relevant features for silica toxicity. The 'surface' also plays an important role in silica toxicity, but this term has often been used in a very general way, without defining which properties of the surface are actually driving toxicity. How the chemical features (e.g., silanols and siloxanes) and configuration of the silica surface can trigger toxic responses remains incompletely understood. Main body: Recent developments in surface chemistry, cell biology and toxicology provide new avenues to improve our understanding of the molecular mechanisms of the adverse responses to silica particles. New physico-chemical methods can finely characterize and quantify silanols at the surface of silica particles. Advanced computational modelling and atomic force microscopy offer unique opportunities to explore the intimate interactions between silica surface and membrane models or cells. In recent years, interdisciplinary research, using these tools, has built increasing evidence that surface silanols are critical determinants of the interaction between silica particles and biomolecules, membranes, cell systems, or animal models. It also has become clear that silanol configuration, and eventually biological responses, can be affected by impurities within the crystal structure, or coatings covering the particle surface. The discovery of new molecular targets of crystalline as well as amorphous silica particles in the immune system and in epithelial lung cells represents new possible toxicity pathways. Cellular recognition systems that detect specific features of the surface of silica particles have been identified. Conclusions: Interdisciplinary research bridging surface chemistry to toxicology is progressively solving the puzzling issue of the variable toxicity of silica. Further interdisciplinary research is ongoing to elucidate the intimate mechanisms of silica pathogenicity, to possibly mitigate or reduce surface reactivity

    Delivery status of the ELI-NP gamma beam system

    Get PDF
    International audienceThe ELI-NP GBS is a high intensity and monochromatic gamma source under construction in Magurele (Romania). The design and construction of the Gamma Beam System complex as well as the integration of the technical plants and the commissioning of the overall facility, was awarded to the Eurogammas Consortium in March 2014. The delivery of the facility has been planned in for 4 stages and the first one was fulfilled in October 31st 2015. The engineering aspects related to the delivery stage 1 are presented

    Pediatric Systemic Multi-Inflammatory Diseases in Italy During Sars-Cov-2 Epidemic: From Kawasaki Disease To Kawacovid

    Get PDF
    Introduction: Italy was affected by the SARS-CoV-2 epidemic after its outbreak in China. With a 4-weeks delay after the peak in adults, we observed an abnormal number of patients with characteristics of a multi-inflammatory disease and similarities with Kawasaki Disease (KD). Others reported similar cases, defined PIMS-TS or MIS-C.1,2 Objectives: To better characterize clinical features and treatment response of PIMS-TS and to explore its relationship with KD. Methods: We conducted an observational, retrospective, multicenter study. On April 24th-2020 the Rheumatology Study Group of the Italian Pediatric Society launched a national online survey, to enroll patients diagnosed with KD or with a multisystem inflammatory disease between February 1st 2020 and May 31st. The population was then divided into two different groups: 1) Classical and incomplete KD, named Kawasaki Disease Group (KDG); 2) KD-like multi-inflammatory syndrome, named KawaCOVID (KCG). An expert panel of pediatric rheumatologists re-analyzed every single patient to ensure appropriate classification. Data were collected with an online database. Results: 149 cases were studied, 96 with KDG and 53 with KCG. The two population significantly differed for clinical characteristics (see table 1). Lymphopenia, higher CRP levels, elevated Ferritin and Troponin-T characterized KCG such as lower WBC and platelets (all p values<0,05). KDG received more frequently immunoglobulins (IVIG) and acetylsalicylic acid (ASA) (81,3% vs 66%; p=0.04 and 71,9% vs 43,4%; p=0.001 respectively) as KCG more often received glucocorticoids (56,6% vs 14,6%; p<0.0001). SARS-CoV-2 assay more often resulted positive in KCG than in KDG (75,5% vs 20%; p<0.0001). Short-term follow data on KCG showed minor complications while on KDG a majority of patients had persistence of CAA. Comparing KDG with a KD-Historical Italian cohort (598 patients), no statistical difference was found in terms of clinical manifestations and laboratory data between the two groups Conclusion: Our study would suggest that SARS-CoV-2 infection might determine two distinct inflammatory diseases in children: KD, possibly triggered by SARS-CoV-2, and PIMS-TS. Older age at onset and clinical peculiarities, like the occurrence of myocarditis, characterize this multiinflammatory syndrome. Our patients had an optimal response to treatments and a good outcome, with few complications and no deaths
    • …
    corecore