14,349 research outputs found

    The Effects of Inlet Flow Modification on Cavitating Inducer Performance

    Get PDF
    This paper explores the effect of inlet flow modification on the cavitating and noncavitating performance of two cavitating inducers, one of simple helical design and the other a model of the low-pressure LOX pump in the Space Shuttle Main Engine. The modifications were generated by sections of honeycomb, both uniform and nonuniform. Significant improvement in the performance over a wide range of flow coefficients resulted from the use of either honeycomb section. Measurements of the axial and swirl velocity profiles of the flows entering the inducers were made in order to try to understand the nature of the inlet flow and the manner in which it is modified by the honeycomb sections

    Calculable inverse-seesaw neutrino masses in supersymmetry

    Get PDF
    We provide a scenario where naturally small and calculable neutrino masses arise from a supersymmetry breaking renormalization-group-induced vacuum expectation value. We adopt a minimal supergravity scenario without ad hoc supersymmetric mass parameters. The lightest supersymmetric particle can be an isosinglet scalar neutrino state, potentially viable as WIMP dark matter through its Higgs new boson coupling. The scenario leads to a plethora of new phenomenological implications at accelerators including the Large Hadron Collider.Comment: LaTeX, 5 pages, 4 figures. Comments and references added. Final version to appear in PR

    Exciting polaritons with quantum light

    Full text link
    We discuss the excitation of polaritons---strongly-coupled states of light and matter---by quantum light, instead of the usual laser or thermal excitation. As one illustration of the new horizons thus opened, we introduce Mollow spectroscopy, a theoretical concept for a spectroscopic technique that consists in scanning the output of resonance fluorescence onto an optical target, from which weak nonlinearities can be read with high precision even in strongly dissipative environments.Comment: 5 pages, 3 figure

    Electrostatic control of quantum dot entanglement induced by coupling to external reservoirs

    Full text link
    We propose a quantum transport experiment to prepare and measure charge-entanglement between two electrostatically defined quantum dots. Coherent population trapping, as realized in cavity quantum electrodynamics, can be carried out by using a third quantum dot to play the role of the optical cavity. In our proposal, a pumping which is quantum mechanically indistinguishable for the quantum dots drives the system into a state with a high degree of entanglement. The whole effect can be switched on and off by means of a gate potential allowing both state preparation and entanglement detection by simply measuring the total current.Comment: 5 pages, 4 figures, Latex2e with EPL macros, to appear in Europhysics Letter

    Geometry and topology of knotted ring polymers in an array of obstacles

    Full text link
    We study knotted polymers in equilibrium with an array of obstacles which models confinement in a gel or immersion in a melt. We find a crossover in both the geometrical and the topological behavior of the polymer. When the polymers' radius of gyration, RGR_G, and that of the region containing the knot, RG,kR_{G,k}, are small compared to the distance b between the obstacles, the knot is weakly localised and RGR_G scales as in a good solvent with an amplitude that depends on knot type. In an intermediate regime where RG>b>RG,kR_G > b > R_{G,k}, the geometry of the polymer becomes branched. When RG,kR_{G,k} exceeds b, the knot delocalises and becomes also branched. In this regime, RGR_G is independent of knot type. We discuss the implications of this behavior for gel electrophoresis experiments on knotted DNA in weak fields.Comment: 4 pages, 6 figure

    Linear and nonlinear coupling of quantum dots in microcavities

    Full text link
    We discuss the topical and fundamental problem of strong-coupling between a quantum dot an the single mode of a microcavity. We report seminal quantitative descriptions of experimental data, both in the linear and in the nonlinear regimes, based on a theoretical model that includes pumping and quantum statistics.Comment: Proceedings of the symposium Nanostructures: Physics and Technology 2010 (http://www.ioffe.ru/NANO2010), 2 pages in proceedings styl

    Warped flavor symmetry predictions for neutrino physics

    Get PDF
    A realistic five-dimensional warped scenario with all standard model fields propagating in the bulk is proposed. Mass hierarchies would in principle be accounted for by judicious choices of the bulk mass parameters, while fermion mixing angles are restricted by a Δ(27)\Delta(27) flavor symmetry broken on the branes by flavon fields. The latter gives stringent predictions for the neutrino mixing parameters, and the Dirac CP violation phase, all described in terms of only two independent parameters at leading order. The scheme also gives an adequate CKM fit and should be testable within upcoming oscillation experiments.Comment: 19 pages, 2 figue

    Novel approaches for portfolio construction using second order stochastic dominance

    Get PDF
    In the last decade, a few models of portfolio construction have been proposed which apply Second Order Stochastic Dominance (SSD) as a choice criterion. SSD approach requires the use of a reference distribution which acts as a benchmark. The return distribution of the computed portfolio dominates the benchmark by the SSD criterion. The benchmark distribution naturally plays an important role since di erent benchmarks lead to very di erent portfolio solutions. In this paper we describe a novel concept of reshaping the benchmark distribution with a view to obtaining portfolio solutions which have enhanced return distributions. The return distribution of the constructed portfolio is considered enhanced if the left tail is improved, the downside risk is reduced and the standard deviation remains within a speci ed range. We extend this approach from long only to long-short strategies which are used by many hedge fund and quant fund practitioners. We present computational results which illustrate (i) how this approach leads to superior portfolio performance (ii) how signi cantly better performance is achieved for portfolios that include shorting of assets

    Status of neutrino oscillations 2018: first hint for normal mass ordering and improved CP sensitivity

    Full text link
    We present a new global fit of neutrino oscillation parameters within the simplest three-neutrino picture, including new data which appeared since our previous analysis~\cite{Forero:2014bxa}. In this update we include new long-baseline neutrino data involving the antineutrino channel in T2K, as well as new data in the neutrino channel, data from NOν\nuA, as well as new reactor data, such as the Daya Bay 1230 days electron antineutrino disappearance spectrum data and the 1500 live days prompt spectrum from RENO, as well as new Double Chooz data. We also include atmospheric neutrino data from the IceCube DeepCore and ANTARES neutrino telescopes and from Super-Kamiokande. Finally, we also update our solar oscillation analysis by including the 2055-day day/night spectrum from the fourth phase of the Super-Kamiokande experiment. With the new data we find a preference for the atmospheric angle in the upper octant for both neutrino mass orderings, with maximal mixing allowed at Δχ2=1.6(3.2)\Delta\chi^2 = 1.6 \, (3.2) for normal (inverted) ordering. We also obtain a strong preference for values of the CP phase δ\delta in the range [π,2π][\pi,2\pi], excluding values close to π/2\pi/2 at more than 4σ\sigma. More remarkably, our global analysis shows for the first time hints in favour of the normal mass ordering over the inverted one at more than 3σ\sigma. We discuss in detail the origin of the mass ordering, CP violation and octant sensitivities, analyzing the interplay among the different neutrino data samples.Comment: Updated neutrino oscillation analysis using the most recent results from T2K, NOν\nuA, RENO and Super-Kamiokande. 17 pages, 8 figures, 1 tabl
    corecore