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Abstract In the last decade, a few models of portfolio construction have been pro-
posed which apply second order stochastic dominance (SSD) as a choice criterion.
SSD approach requires the use of a reference distribution which acts as a benchmark.
The return distribution of the computed portfolio dominates the benchmark by the
SSD criterion. The benchmark distribution naturally plays an important role since dif-
ferent benchmarks lead to very different portfolio solutions. In this paper we describe
a novel concept of reshaping the benchmark distribution with a view to obtaining port-
folio solutions which have enhanced return distributions. The return distribution of the
constructed portfolio is considered enhanced if the left tail is improved, the downside
risk is reduced and the standard deviation remains within a specified range. We extend
this approach from long only to long-short strategies which are used by many hedge
fund and quant fund practitioners. We present computational results which illustrate
(1) how this approach leads to superior portfolio performance (2) how significantly
better performance is achieved for portfolios that include shorting of assets.
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1 Introduction

Second order stochastic dominance (SSD) has been long recognised as a rational
criterion of choice between wealth distributions (Hadar and Russell 1969; Bawa 1975;
Levy 1992). Empirical tests for SSD portfolio efficiency have been proposed in Post
(2003), Kuosmanen (2004). In recent times SSD choice criterion has been proposed
(Dentcheva andRuszczynski 2003, 2006;Roman et al. 2006) for portfolio construction
by researchers working in this domain. The approach described in Dentcheva and
Ruszczynski (2003, 2006) first considers a reference (or benchmark) distribution and
then computes a portfolio which dominates the benchmark distribution by the SSD
criterion. In Roman et al. (2006) a multi-objective optimisation model is introduced in
order to achieve SSD dominance. This model is both novel and usable since, when the
benchmark solution itself is SSD efficient or its dominance is unattainable, it finds an
SSD efficient portfolio whose return distribution comes close to the benchmark in a
satisficing sense. The topic continues to be researched (Dentcheva and Ruszczynski;
Fábián et al. 2011a, b; Post and Kopa 2013; Kopa and Post 2015; Post et al. 2015;
Hodder et al. 2015; Javanmardi and Lawryshy 2016) from the perspective ofmodelling
as well as that of computational solution.

These models start from the assumption that a reference (benchmark) distribution
is available. It was shown in Roman et al. (2006) that the reference distribution plays
a crucial role in the selection process: there are many SSD efficient portfolios and the
choice of a specific one depends on the benchmark distribution used. SSD efficiency
does not necessarily make a return distribution desirable, as demonstrated by the
optimal portfolio with regards to maximum expected return. It was shown in Roman
et al. (2006) that this portfolio is SSD efficient - however, it is undesirable to a large
class of decision-makers.

In the last two decades, quantitative analysts in the fund management industry
have actively debated about the benefit of active fund management in contrast to
passive investment. Passive investment equates to holding a portfolio determined by
the constituents of a chosenmarket index. Active fundmanagers are engaged in finding
portfolios which provide better return than that of a passive index portfolio. Set against
this background the index is a natural benchmark (reference) distribution which an
active fund manager would like to dominate. There have been several papers under the
topic of “enhanced indexation” (di Bartolomeo 2000) which discuss alternative ways
of doing better than the passive index portfolio. It has been shown empirically that
return distributions of financial indices are SSD dominated (Post 2003; Kuosmanen
2004; Post and Kopa 2013; Kopa and Post 2015; Post et al. 2015).

In Roman et al. (2013) we introduced SSD-based models for enhanced indexation
and reported encouraging practical results. An essential aspect of our approach to
portfolio construction can be articulated by the qualitative statement “reduction of the
downside risk and improvement of the upside potential”. This can be translated as
finding return distributions with high expected value and skewness, meaning a left
tail that is closer to the mean. An index does not necessarily (indeed very rarely)
possess these properties. Thus the SSD dominant portfolio solutions, when we choose
an index as the benchmark, do not necessarily have return distributions with a short left
tail, high skewness and controlled standard deviation. Research effort in this direction
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include SSD based models in which, by appropriately selecting model parameters, the
left tail of the resulting distribution can be partially controlled, in the sense that more
“weight” can be given to tails at specified levels of confidence (Kopa and Post 2015;
Hodder et al. 2015), see also Javanmardi and Lawryshy (2016).

In this paper, we propose a different approach that stems from a natural question
to ask: how should we choose the reference distribution in SSD models such that the
resulting portfolio has a return distribution that, in addition to being SSD efficient,
has specific desirable properties, in the form of (1) high skewness and (2) standard
deviation within a range?

The contributions of this paper are summarised as follows:

(a) we propose a method of reshaping, or enhancing, a given (reference) distribu-
tion, namely, that of a financial index, in order to use it as a benchmark in SSD
optimisation models;

(b) we formulate and solve SSD models that include long-short strategies which are
established financial practice to cope with changing financial regimes (bull and
bear markets);

(c) we investigate empirically the in-sample and out-of sample performance of port-
folios obtained using enhanced benchmarks and long-short strategies.

The rest of the paper is organised in the following way. In Sect. 2 we present
portfolio optimisationmodels based on the SSD concept and the role of the benchmark
/ reference distribution. Themethod of reshaping a benchmark distribution is presented
in Sect. 3. In Sect. 4we extend the long-only formulation presented in Sect. 2 to include
long-short strategies as discussed in (b) above. Section 5 contains the results of our
numerical experiments. We compare the in-sample and out-of sample performance
of portfolios obtained in SSD models, using an original benchmark and a reshaped
benchmark. The comparison is made in a long-only setting as well as in the context of
various long-short strategies. A summary and our conclusions are presented in Sect. 6.

2 Portfolio optimisation using SSD

We consider a portfolio selection problem with one investment period. Let n denote
the number of assets into which we may invest. A portfolio x = (x1, . . . xn) ∈ R

n

represents the proportions of the portfolio value invested in the available assets. Let
the n-dimensional random vector R = (R1, . . . , Rn) denote the returns of the different
assets at the end of the investment period.

It is usual to consider the distribution of R as discrete, described by the realisations
under a finite number of scenarios S; scenario j occurs with probability p j where
p j > 0 and p1+· · ·+ pS = 1. Let us denote by ri j the return of asset i under scenario
j . The random return of portfolio x is denoted by Rx , with Rx := x1R1 + · · · xn Rn .
We remind that second-order stochastic dominance (SSD) is a preference relation

among random variables (representing portfolio returns) defined by the following
equivalent conditions:

(a) E(U (R)) ≥ E(U (R′)) holds for any nondecreasing and concave utility function
U for which these expected values exist and are finite.
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(b) E([t − R]+) ≤ E([t − R′]+) holds for each t ∈ R.
(c) Tailα(R) ≥ Tailα(R′) holds for each 0 < α ≤ 1, where Tailα(R) denotes the

unconditional expectation of the least α ∗ 100% of the outcomes of R.

If the relations above hold, the random variable R is said to dominate the random
variable R′ with respect to second-order stochastic dominance (SSD); we denote this
by R �SSD R′. The strict relation R �SSD R′ is similarly defined, if, for example, in
addition to (c), there exists α in (0,1) such that Tailα(R) > Tailα(R′).

The equivalence of the above relations is well known since the works of Whimore
and Findlay (1978) and Ogryczak and Ruszczynski (2002). From the first relation,
the importance of SSD in portfolio selection can be clearly seen: it expresses the
preference of rational and risk-averse decision makers.

Remark 1 The definition of Tailα(R) is an informal definition. For a formal definition,
quantile functions can be used. Denote by FR the cumulative distribution function
of a random variable R. If there exists t such that FR(t) = α then Tailα(R) =
αE(R|R ≤ t)—which justifies the informal definition. For the general case, let us
define the generalised inverse of FR as F−1

R (α) := inf{t |FR(t) ≥ α} and the second
quantile function as F−2

R (α) := ∫ α

0 F−1
R (β)dβ and F−2

R (0) := 0.With these notations,
Tailα(R) := F−2

R (α).

Let X ⊂ R
n denote the set of the feasible portfolios, we assume that X is a bounded

convex polyhedron. A portfolio x� is said to be SSD-efficient if there is no feasible
portfolio x ∈ X such that Rx �SSD Rx� .

Recently proposed portfolio optimisation models based on the concept of SSD
assume that a reference (benchmark) distribution Rref is available. Let τ̂ be the tails of
the benchmark distribution at confidence levels 1

S , . . . , S
S ; that is, τ̂ = (τ̂1, . . . , τ̂S) =(

Tail 1
S
Rref, . . . ,Tail S

S
Rref

)
.

Assuming equiprobable scenarios as in Roman et al. (2006, 2013), Fábián et al.
(2011a, b), the model in Fábián et al. (2011b) optimises the worst difference between
the “scaled” tails of the benchmark and of the return distribution of the solution
portfolio; the α- “scaled” tail is defined as 1

α
Tailα(R) . The decision variables are the

portfolio weights x1, . . . , xn and V = min1≤s≤S
1
s

(
Tail s

S
(Rx ) − τ̂s

)
, representing the

worst partial achievement of the differences between the scaled tails of the portfolio
return and the scaled tails of the benchmark. The scaled tails of the benchmark are
( S1 τ̂1,

S
2 τ̂2 . . . , S

S τ̂S). Using a cutting plane representation (Fábián et al. 2011a) the
model can be written as:

maxV (1)

subject to:

n∑

i=1

xi = 1 (2)

V ≤ 1

s

∑

j∈Js

n∑

i=1

ri j xi − S

s
τ̂s ∀Js ⊂ {1, . . . , S}, |Js | = s, s = {1, . . . , S} (3)
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V ∈ R, xi ∈ R
+, ∀i ∈ {1 . . . n} (4)

Remark 2 The cutting plane formulation above has a huge number of constraints (3),
referred to in Fábián et al. (2011a) as “cuts”. The specialised solution method (Fábián
et al. 2011a) adds cuts at each iteration until optimality is reached; it is shown that in
practice, only a few cuts are needed. For example, all models with 10,000 scenarios
of assets returns were solved with less than 30 iterations. For more details, the reader
is referred to Fábián et al. (2011a).

Remark 3 In case that optimisation of the worst partial achievement has multiple
optimal solutions, all of them improve on the benchmark (if the optimum is positive)
but not all of them are guaranteed to improve until SSD efficiency is attained. The
model proposed in Roman et al. (2006) has a slightly different objective function
that included a regularisation term, in order to guarantee SSD efficiency for the case
multiple optimal solutions. This termwas dropped in the cutting plane formulation, the
advantage of this being huge decrease in computational difficulty and solution time;
just as an example, models with tens of thousands of scenarios were solved within
seconds, while the original model formulation in Roman et al. (2006) could only deal
with a number of scenarios in the order of hundreds. In Fábián et al. (2011a), extensive
computational results are reported. For relatively small datasets, SSD models were
solved with both the cutting plane formulation and the original formulation including
the regularisation term; in all instances, both formulations led to the same optimal
solutions. For more details, the reader is referred to Fábián et al. (2011a).

The tails of the benchmark distribution (τ̂1, . . . , τ̂S) are the decision-maker’s input.
When the benchmark is not SSD efficient, the solution portfolio has a return distri-
bution that improves on the benchmark until SSD efficiency is achieved. In case the
benchmark is SSD efficient, the model finds the portfolio whose return distribution is
the benchmark. For instance, if the benchmark is the return distribution of the asset
with the highest expected return, the solution portfolio is that where all capital is
invested in this asset.

“Unattainable” reference distributions are discussed in Roman et al. (2006), where
the (SSD efficient) solution portfolio has a return distribution that comes as close
as possible to dominating the benchmark; this is obtained by minimising the largest
difference between the tails of these two distributions. However, simply setting “high
targets” (i.e. a possibly unrealistic benchmark) does not solve the problem of finding
a portfolio with a “good” return distribution, e.g. one having a short left tail/high
skewness and controlled standard deviation.

In recent research, the most common approach is to set the benchmark as the return
distribution of a financial index. This is natural since discrete approximations for this
choice can be directly obtained from publicly available historical data, and also due
to the meaningfulness of interpretation - it is common practice to compare / make
reference to an index performance. The financial index distribution is “achievable”
since there exists a feasible portfolio that replicates the index and empirical evidence
(Roman et al. 2006, 2013; Post and Kopa 2013) suggests that this distribution is in
most cases not SSD efficient. While it is safe to say that generally a portfolio that
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dominates an index with relation to SSD can be found, there is no guarantee that this
portfolio will have desirable properties.

In this work, we use the distribution of a financial index as a starting point; we
enhance it in the sense of increasing skewness by a decision-maker’s specified amount
while keeping standard deviation within a (decision-maker specified) range.

3 Reshaping the reference distribution

We propose a method of reshaping an original reference distribution and achieving a
synthetic (improved) reference distribution.

To clarify what we mean by improved reference distribution, let us consider the
blue area in Fig. 1 to be the density curve of the original reference distribution, in this
example closely symmetrical and with a considerably long left-tail.

The pink area in the figure represents the density curve of what we consider to
be an improved reference distribution. Desirable properties include a shorter left tail
(reduced probability of large losses), which translates into higher skewness, and a
higher expected return, which is equivalent to a higher mean. A smaller standard
deviation is not necessarily desirable, as it might limit the upside potential of high
returns. Instead, we require the standard deviation of the new distribution to be within
a specified range from the standard deviation of the original distribution.

We hereby introduce a method for transforming the original reference distribution
into a synthetic reference distribution given target values for the first three statistical
moments (mean, standard deviation and skewness).

Let the original reference distribution be represented by a sample Y = (y1, . . . , yS)
with mean μY , standard deviation σY and skewness γY .

Fig. 1 Density curves for the original and improved reference distributions
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Given target values μT , σT and γT , our goal is to find a distribution Y ′ with values
y′
s, s = 1, . . . , S, such that μ′

Y = μT , σY ′ = σT and γY ′ = γT .
In statistics, this problem is related to test equating. It is commonly found in stan-

dardized testing, where multiple test forms are needed because examinees must take
the test at different occasions and one test form can only be administered once to ensure
test security. However, test scores derived from different forms must be equivalent.
Let us consider two test forms, say, Form V and FormW . It is generally assumed that
the examinee groups that take test forms V andW are sampled from the same popula-
tion, and differences in score distributions are attributed to form differences (e.g. more
difficult questions in V than in W ). Equating forms V and W involves modifying V
scores so that the transformed V scores have the same statistical properties as W .

If our intention was solely to preserve the first two moments, a linear equating
method would be appropriate. Linear equating (Kolen and Brennan 1995) takes the
form:

Y ′ = σT

[
Y − μY

σY

]

+ μT

In order, however, to preserve the first three moments, we make use of a quadratic
curve equating method proposed by Wang and Kolen (1996). In selecting a nonlinear
equating function, the authors aimed for a method that was more flexible than linear
equating and would still preserve its beneficial properties such as using statistics with
small random errors that are computationally simple. The method works as follows:

1. Step 1: Arbitrarily define μT , γT and σT .
2. Step 2: Using the single-variable Newton–Raphson iterative method (Press et al.

(1988), pp. 362–367), find d so that Y + dY 2 has skewness γ(Y+dY 2) = γT . Using
the standard skewness formula for a discrete sample, the skewness of the original
reference distribution γY is given by:

γY =
1
n

∑n
i=1(yi − μY )3

[
1

n−1

∑n
i=1(yi − μY )2

]3/2

In order to find d we need to solve the equation:

1
n

∑n
i=1

(
yi + dy2i − ( 1n

∑n
j=1 y j + dy2j )

)3

[
1

n−1

∑n
i=1

(
yi + dy2i − ( 1n

∑n
j=1 y j + dy2j )

)2]3/2
− γT = 0

3. Step 3: Let g = σT
σY+dY2

. Then g(Y + dY 2) will have γg(Y+dY 2) = γT and

σg(Y+dY 2) = σT since a linear transformation (multiplication of constant g) does
not change the skewness of a distribution.

4. Step 4: Let h = μT −μg(Y+dY 2). Then Y
′ = h+g(X+dX2)will haveμY ′ = μT ,

γY ′ = γT and σY ′ = σT since adding a constant does not change the skewness or
standard deviation of a distribution.
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5. Step 5: We then find Y ′ by computing:

y′
s = gdy2s + gys + h, ∀s = 1, . . . , S

To apply this method we need to define values for γT , σT and μT . In this specific
context, these values should not be independent from the original distribution. For
instance, if the skewness of the return distribution of a financial index is very low,
simply setting a very high value for the target skewness might render it impossible
to find a combination of assets (which are to some extent correlated to the original
reference distribution) that dominates the synthetic distribution.

In preliminary tests, we noticed that large differences in values for μT have little
impact in out-of-sample results. Therefore, in our computation experiments, we set
μT = μY and we introduce two parameters to define the amount by which the target
for the other moments differ from the original values: Δγ and Δσ , both defined in R.
Given these parameters, γT and σT are defined as:

γT = γY + |γY |Δγ

σT = σY + σYΔσ

4 Long-short modelling

When short-selling is allowed, the amount available for purchases of stocks in long
positions is increased. Suppose we borrow from an intermediary a specified number
of units of asset i (i = 1, . . . , n), corresponding to a proportion x−

i of capital. We sell
them immediately in the market and hence have a cash sum of (1 + ∑n

i=1 x
−
i )C to

invest in long positions; where C is the initial capital available.
In long-short practice, it is common to fix the total amount of short-selling to a

pre-specified proportion α of the initial capital. In this case, the amount available to
invest in long positions is (1+α)C . A fund that limits their exposure with a proportion
α = 0.2 is usually referred to as a 120/20 fund. For modelling this situation, to each
asset i ∈ 1, . . . , n we assign two continuous nonnegative decision variables x+

i , x−
i ,

representing the proportions invested in long and short positions in asset i , and two
binary variables z+i , z−i that indicate whether there is investment in long or short
positions in asset i . For example, if 10% of the capital is shorted in asset i , we write
this as x+

i = 0, x−
i = 0.1, z+i = 0, z−i = 1.

As in Roman et al. (2013), V = min1≤s≤S
1
s

(
Tail s

S
(RT (x+ − x−)) − τ̂s

)
denotes

the worst partial achievement; the scaled long/short reformulation of the achievement-
maximisation problem is written as:

maxV (5)

subject to:

n∑

i=1

x+
i = 1 + α (6)
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n∑

i=1

x−
i = α (7)

x+
i ≤ (1 + α)z+i ∀i ∈ N (8)

x−
i ≤ αz−i ∀i ∈ N (9)

z+i + z−i ≤ 1 ∀i ∈ N (10)

s

S
V + τ̂s ≤ 1

S

∑

j∈Js

n∑

i=1

ri j (x
+
i − x−

i ) ∀Js ⊂ {1, . . . , S}, |Js | = s, s = {1, . . . , S}

(11)

V ∈ R, x+
i , x−

i ∈ R
+, z+i , z−i ∈ {0, 1}, ∀i ∈ N (12)

To solve this formulation, we implemented a branch-and-cut algorithm (Padberg
and Rinaldi 1991), which modifies the basic branch-and-bound strategy by attempting
to identify new inequalities before branching a partial solution. Since the branch-and-
bound algorithm begins with a relaxed formulation of the problem, a solution cannot
be accepted as candidate for branching unless it violates no constraints of type (11).
In order to identify violated constraints we employ the separation algorithm proposed
by Fábián et al. (2011a).

5 Computational results

5.1 Motivation, dataset and methodology

The aims of this computational study are:

1. To investigate the effect of using a benchmark distribution, reshaped by modi-
fying skewness and/or standard deviation, in SSD-based portfolio optimisation
models; the return distributions of the resulting portfolios, as well as their out-
of-sample performance, are compared to those of portfolios obtained using the
original benchmark.

2. To investigate the performance of various long-short strategies in comparison with
the long only strategy, as used in SSD-based models with original and reshaped
benchmarks.

We use real-world historical daily data (closing prices) taken from the universe of
assets defined by the Financial Times Stock Exchange 100 (FTSE100) index over the
period 09/10/2007 to 07/10/2014 (1765 trading days). The data was collected from
Thomson Reuters Datastream (2014) and adjusted to account for changes in index
composition. This means that our models use no more data than was available at
the time, removing susceptibility to the influence of survivor bias. For each asset we
compute the corresponding daily rates of return.

The original benchmark distribution is obtained by considering the historical daily
rates of return of FTSE100 during the same time period.We implement models (2)–(4)
and (5)–(12) for different values of α,Δγ and Δσ .
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We used an Intel(R) Core(TM) i5-3337U CPU@ 1.80 GHz with 6GB of RAM and
Linux as operating system. The Branch-and-cut algorithm was written in C++ and the
backtesting framework was written in R (R Core Team 2015); we used CPLEX 12.6
(IBM 2015) as mixed-integer programming solver.

The methodology we adopt is successive rebalancing over time with recent histor-
ical data as scenarios. We start from the beginning of our data set. Given in-sample
duration of S days, we decide a portfolio using data taken from an in-sample period
corresponding to the first S+1 days (yielding S daily returns for each asset). The port-
folio is then held unchanged for an out-of-sample period of 5days. We then rebalance
(change) our portfolio, but now using the most recent S returns as in-sample data. The
decided portfolio is then held unchanged for an out-of-sample period of 5days, and
the process repeats until we have exhausted all of the data. We set S = 564 (approxi-
mately the number of trading days in 2.5years) ; the total out-of-sample period spans
almost 5years (January 2010–October 2014).

Once the data has been exhausted we have a time series of 1201 portfolio return
values for out-of-sample performance, here from period 565 (the first out-of-sample
return value, corresponding to 04/01/2010) until the end of the data.

5.2 Long-short and long-only comparison

We test α = 0, α = 0.2, α = 0.5 and α = 1.0, thus we consider 100/0 (long-
only), 120/20, 150/50 and 200/100 portfolios. The benchmark distribution is that of
FTSE100. Given the portfolio holding period of 5 days, during the out-of-sample
evaluation period there are a total of 240 rebalances. For each rebalance, we assign a
time limit of 60 s.

5.2.1 In-sample analysis

Table 1 shows in-sample statistics regarding optimal solution values. Under Optimal
object value, three columns are reported: (1)Mean, showing the average of the optimal
objective values in each rebalance; (2) Min and (3) Max, showing respectively the
minimum and maximum optimal objective values in each rebalance.

The first thing we note is that, with the exception of 200/100 portfolios, in all
rebalances a positive optimal value was obtained, which means that the solver found
a portfolio that dominates the index return distribution with respect to SSD. Up to
150/50, all rebalances were solved to optimality within 60 s. This is not the case,
however, for the 200/100 portfolios. Optimality was not proven within the time limit
for about 15% (35 out of 240) of all 200/100 rebalances. In some cases we were not
able to find a portfolio that dominates its corresponding benchmark: in Table 1, the
minimum solution value found for 200/100 was −0.000055.

Despite that, overall, we observe that adding shorting improves the quality of in-
sample solutions, with the average, minimum and maximum of optima being higher
when α is higher (with the exception of the minimum solution value for 200/100 as
stated above).
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Table 1 Long only and
long-short, in-sample statistics

Long/short Optimal objective value

Mean Min Max

100/0 0.001234 0.000760 0.001868

120/20 0.001697 0.001019 0.002359

150/50 0.002114 0.001177 0.002899

200/100 0.002434 −0.000055 0.003471

Table 2 Long/short, number of stocks in the composition of optimal portfolios

Long/short Long positions Short positions Total

Mean Min Max Mean Min Max Mean Min Max

100/0 10.7 5 21 – – – 10.7 5 21

120/20 13.3 6 23 4.1 1 9 17.4 8 30

150/50 18.3 10 29 8.5 2 18 26.8 13 44

200/100 25.9 17 37 16.8 9 25 42.7 27 59

Table 2 shows how many assets on average were in the composition of optimal
portfolios—also reported are minimum and maximum numbers, for each value of α.
Statistics are shown for assets held long, short and also for the complete set. From the
table we can see that the addition of shorting tends to increase the number of stocks
picked. This is expected, since the higher α is, the higher is the exposure. For instance,
if α = 0.5 we have 0.5C in repayment obligations and 1.5C in long positions, having
a total exposure of 2C in different assets.

However, even in long/short models, the cardinality of the optimal portfolios is not
high (26.8 for 150/50, about a quarter of the total of 100 companies from FTSE100,
and 42.7 for 200/100), thus we consider the introduction of cardinality constraints to
be unnecessary.

5.2.2 Out-of-sample performance

Figure 2 shows graphically the performance of each of the four strategies (100/0,
120/20, 150/50 and 200/100) as well as that of the financial index (FTSE100), as
represented by their actual returns over the out-of sample period January 2010 to
October 2014.

From the figure it is clear that portfolios with shorting (α > 0) achieved better per-
formance than the long-only portfolio, although it is also apparent that the variability
of returns was larger. This can be confirmed by analysing Table 3, which presents
several out-of-sample statistics. The meaning of each column is outlined below:

– Final value: Normalised final value of the portfolio at the end of the out-of-sample
period.

– Excess over RFR (%): Annualised excess return over the risk free rate. For
FTSE100 we used a flat yearly risk free rate of 2%.
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Fig. 2 Long/short out-of-sample performance, 2010–2014

Table 3 Long/short, out-of-sample performance statistics

Long/short Final Excess over Sharpe Sortino Max draw- Max reco- Daily returns

value RFR (%) ratio ratio down (%) very days Mean SD

FTSE100 1.18 1.57 0.097 0.134 18.83 481 0.00019 0.00985

100/0 2.19 15.97 0.855 1.242 14.55 150 0.00071 0.01071

120/20 2.60 20.24 0.998 1.446 12.33 151 0.00086 0.01141

150/50 2.78 21.93 0.983 1.410 14.15 183 0.00093 0.01246

200/100 2.53 19.58 0.824 1.170 17.65 244 0.00086 0.01340

– Sharpe ratio: Annualised Sharpe ratio (Sharpe 1966) of returns.
– Sortino ratio: Annualised Sortino ratio (Sortino and Price 1994) of returns.
– Max drawdown (%): Maximum peak-to-trough decline (as percentage of the peak
value) during the entire out-of-sample period.

– Max recovery days: Maximum number of days for the portfolio to recover to the
value of a former peak.

– Daily returns—Mean: Mean of out-of-sample daily returns.
– Daily returns—SD: Standard deviation of out-of-sample daily returns.

As we increase α up to 0.5, both the mean and the standard deviation of the daily
returns increase. As a consequence, although 150/50 achieved better returns than
120/20, the latter obtained higher Sharpe and Sortino ratios, as well as a lower max-
imum drawdown. Adding shorting seems to bring better performance at the expense
of greater risk.

The overall performance of 200/100 portfolios was better than the long-only port-
folio, but worse than 120/20 and 150/50. The 200/100 portfolio is more volatile (both
in-sample and out-of-sample), which may be the reason for its lower final value when
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compared to the other cases. Moreover, some rebalances were not solved within 60s,
yielding suboptimal solutions. In the next sections, where we analyse the effects of
reshaping the reference distribution, we ommit 200/100 results as they show similar
behaviour to the ones presented in this section.

5.3 Reshaping the reference distribution: increased skewness

We now test how reshaping the reference distribution impacts both in-sample and out-
of-sample results. For α = 0, α = 0.2, α = 0.5, we test the effects of different values
of Δγ , more specifically, we test Δγ = [0, 1, 2, 3, 4, 5]. In all tests in this section,
Δσ = 0, that is, the standard deviation is unchanged.

Setting Δγ = 0 is equivalent to optimising with the original reference distribution.
In the rest of the cases, the skewness is increased to γT = γY +(|γY |Δγ ). For example,
if Δγ = 1 and γY < 0 then γT = 0. If Δγ = 1 and γY > 0 then γT = 2γY .

5.3.1 In-sample results

Table 4 presents in-sample results for different values of Δγ . Results are reported
differently when compared to those in Sect. 5.2.1. A direct comparison of optimal
solution values is no longer valid since the models are being optimised over different
(synthetic) reference distributions. We therefore report other in-sample statistics, such
as (i) Mean, (ii) SD and (iii) Skewness: average in-sample mean, standard deviation
and skewness of optimal return distributions over all 240 rebalances. Other reported
in-sample statistics are:

– (iv) ScTailα: the α- “scaled” tail, defined as in Sect. 2 as the conditional expectation
of the least α ∗ 100% of the outcomes.

– (v) EPρ : Expected conditional profit at ρ% confidence level, equivalent to CVaRρ

but calculated from the right tail of the distribution. Let Sρ = �S(ρ/100)�. EPρ

is defined as 1
S−Sρ−1

∑S
s=Sρ r

p
s .

Also reported are the average in-sample (vi) Skewness, (vii) ScTailα and (viii) EPρ

for the synthetic benchmark. As only Δγ was changed, we do not report the average
in-sample mean and standard deviation for the benchmark as these values match the
original in all cases.

We also compare in-sample solutions in terms of their SSD relation. Let Y be
the optimal portfolio (with worst partial achievement V) that solves the enhanced
indexation model and dominates the original reference distribution with respect to
SSD. Accordingly, let Y ′ be the optimal porfolio (with worst partial achievement V ′)
that dominates the synthetic (improved) reference distribution. Let also RY = [rY1 ≤
· · · ≤ rYS ] and RY ′ = [rY ′

1 ≤ · · · ≤ rY
′

S ] be the ordered set of in-sample returns for Y
and Y ′.

It is clear that if V = V ′, Y �SSD Y ′ and Y ′
�SSD Y . If, for instance, Y ′ �SSD Y ,

then Y ′ would have been chosen instead of Y as the optimal solution of the enhanced
indexation model with the original reference distribution since V ′ > V . If V = V ′,
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it is possible, albeit unlikely, that Y ′ �SSD Y or Y �SSD Y ′ - that could be the case
where the mixed-integer programming model had multiple optima.

Assuming that most likely neither Y �SSD Y ′ nor Y ′ �SSD Y , we can measure
which solution is “closer” to dominating the other. For Y ′, we compute, for each
rebalance,SY ′ ⊂ {1, ..., S}where s ∈ SY ′ if Tail s

S
RY ′

> Tail s
S
RY , i.e. |SY ′ | represents

the number of times that the unconditional expectation of the least s scenarios of Y ′ is
greater than the equivalent for Y .We also compute, for each rebalance,SY ⊂ {1, ..., S}
where s ∈ SY if Tail s

S
RY > Tail s

S
RY ′

.
The following columns are included in Table 4:

– (ix) |SY ′ |: Mean value of |SY ′ | over all rebalances.
– (x) |SY |: Mean value of |SY | over all rebalances.

From Table 4, we observe that increasing Δγ increases the in-sample skewness
and also ScTail05 of the optimal distributions—which was expected, since increas-
ing skewness reduces the left tail. We can also observe that the mean and standard
deviation tend to decrease as we increase the skewness in the synthetic distribution.
This decrease is very small or non-existent in the case of smaller deviations from the
original skewness e.g. γ = 1 but more pronounced for larger values of γ .

The skewness of the solution portfolios, although clearly increasing in line with
increasing the skewness of the benchmark, is considerably below the skewness values
set by the improved benchmark. The solution portfolios have on average much higher
expected value and less variance than the improved benchmark.

The statistics for EP95 reach a peak somewhere between Δγ = 1 and Δγ = 2, and
their values decrease for higher Δγ . This might be due to the synthetic distribution
having “unrealistic” properties if its third moment differs too much from that of the
original distribution.We do observe, nevertheless, that increasing skewness alsomakes
in-sample portfolios based on synthetic distributions “closer” to dominating those
based on the original distribution, since |SY ′ | increases and |SY | decreases as Δγ

grows.
We do not report the cardinality of the optimal portfolios as we have observed very

little change in the number of stocks held due to changes in Δγ .
Figure 3 highlights the differences between optimising over the original benchmark

and over the synthetic benchmark. We compare, for the 150/50 case, histograms for
the original benchmark distribution from the 180th rebalance (out of 240) and the
equivalent synthetic benchmark distribution, where Δγ = 5 and Δσ = 0. We chose
the 180th rebalance as the corresponding figures approximate the observed average
properties. The histograms are in line with the average properties observed in Table
4. The left panel shows the difference in the benchmark distributions; the synthetic
benchmark distribution has a reduced left tail, especially concerning the worst case
scenarios, at the expense of having the “peak” slightly towards the left, as compared to
the original benchmark.The right panel compares the returndistributions of the optimal
portfolios, obtained using the original and the synthetic benchmark. The portfolio
based on the synthetic benchmark has a reduced left tail, at the expense of a marginally
lower mean.
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Fig. 3 Left panel: original benchmark (Δγ = 0, Δσ = 0) and a synthetic benchmark with added skew-
ness (Δγ = 5,Δσ = 0). Right panel: the distribution of 150/50 optimal portfolios obtained using the
benchmarks on the left

Fig. 4 Changing Δγ , out-of-sample performance, 2010–2014

5.3.2 Out-of-sample performance

Out-of-sample performance statistics for variations in Δγ are presented in both Table
5 and Fig. 4. Regarding the figure, we choose 120/20 portfolios and show the perfor-
mance graphic for the index (FTSE100), the portfolio based on the original reference
distribution and portfolios based on synthetic distributions where Δγ = {1, 5}. The
out-of-sample performance of the other 120/20 tested parameters (Δγ = {2, 3, 4})
was relatively similar to the ones displayed, hence for readability we did not include
them in the graphic. The table, however, includes the full results.

We observe that the volatility of out-of-sample returns tend to reduce aswe optimise
over synthetic distributions with higher skewness values. The mean returns and excess
returns over the risk free rate tend to increase slightly (up to somewhere between
Δγ = 1 andΔγ = 2) and then start to drop. These results are consistent with observed
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in-sample statistics. Changing skewness had little impact in terms of drawdown and
recovery from drops. While returns do tend to decrease for higher value of Δγ , its
reduced standard deviation might appeal to risk-averse investors. The best values of
Sharpe and Sortino ratios are generally obtained when Δγ = 1, 2 or 3. In particular,
the 120/20 strategy with Δγ =1 or 2 seems to have the best risk-return characteristics.

5.4 Reshaping the reference distribution: modified standard deviation

In this section, we test how portfolios behave for different values ofΔσ . Since increas-
ing skewness slightly seems to be the best choice, according to our results in the
previous section, for the next tests we set Δγ = 1.

We report results for Δσ = [−0.1, 0, 0.1, 0.3, 0.5]; for example, if Δσ = 0.1,
the synthetic reference distribution will have a 10% increase in its standard deviation
when compared to the original reference distribution.

5.4.1 In-sample results

Table 6 shows in-sample results for different values of Δσ . We also display results
for the original reference distribution (when Δσ = Δγ = 0). Apart from this case,
onlyΔσ is changed. Due to this, when compared to Table 4, we replaced the Skewness
column under In-sample benchmark performance by SD, that is, the average in-sample
benchmark standard deviation.

We can see that increasing Δσ increases the standard deviation of the return distri-
butions of optimal portfolios, but also increases their mean and skewness at the same
time.

The standard deviation of the return distribution of optimal portfolios follows the
same pattern as set by the improved benchmarks, in the sense that it increases (or
decreases) with increased (or decreased) standard deviation of the benchmark. It is,
on average, slightly lower compared to the standard deviation of the benchmark. Also,
the optimal portfolios have consuderably better mean and CVaR values than their
corresponding benchmarks.

For Δσ = −0.1, we obtain portfolios whose return distributions have better risk
characteristics in the form of lower standard deviation and higher tail value. On the
other hand, their mean returns, EP95 and even skewness are lower. As we increaseΔσ ,
ScTail05 gets lower, but EP95 gets higher.

We also observe that, when increasing Δσ , the portfolios obtained based on the
original reference distribution are “closer” to dominating the portfolio obtained via
the synthetic benchmark.

Once again, we do not report the cardinality of the optimal portfolios as very little
alteration was observed due to changes in Δσ .

Similarly to Figs. 3 and 5 shows the difference between optimising over the original
and synthetic benchmarks, this time for varying standard deviation in addition to skew-
ness. We compare, for the 150/50 case, the 180th rebalance of the original benchmark
and the equivalent synthetic benchmark where Δγ = 1 and Δσ = 0.5. Again, the left
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Fig. 5 Left panel: original benchmark (Δγ = 0, Δσ = 0) and a synthetic benchmark with added standard
deviation and skewness (Δγ = 1,Δσ = 0.5). Right panel: distribution of optimal portfolios obtained using
the benchmarks on the left

panel compares the different benchmark distributions and the right panel compares the
corresponding portfolios obtained when solving the model against each benchmark.

Increasing standard deviation leads to fatter left and right tails in both the synthetic
benchmark (as compared to the original benchmark) and the distribution of the opti-
mal portfolio (as compared to the portfolio optimised with the original benchmark).
However, especially with the optimised portfolios, the tail “fattening” is much more
pronounced on the right side. This is clearly a matter of choice: if an investor has a less
risk-averse profile, than increasing the standard deviation of the benchmark will yield
riskier but potentially more rewarding portfolios. Once again, the properties observed
in the histograms are in line with the results in Table 6: as we increaseΔσ , we observe
a slightly worse tail, but better mean and EP. The risk/return profile of in-sample port-
folios could be adjusted by increasing standard deviation to increase potential return
and, at the same time, increasing the skewness to reduce the probability of extreme
losses.

5.4.2 Out-of-sample performance

Figure 6 shows the performance graphic for the index (FTSE100), a 120/20 portfolio
based on the original reference distribution and 120/20 portfolios based on synthetic
distributions where Δγ = 1 and Δσ ∈ {−0.1, 0, 0.1, 0.3, 0.5}. From the graphic
we can see that as we increase volatility and returns of in-sample portfolios, we also
increase both for out-of-sample portfolios. The highest returns are obtained when
Δσ = 0.5, although this seems to be the portfolio with the highest variability. Per-
formance graphics for other values of α are similar, but not reported due to space
constraints.

Table 7 reports out-of-sample performance statistics. In accordance to our in-sample
results, a higher value forΔσ implies higher returns but also higher risk.As an example,
the portfolio obtained when α = 0.5 (150/50) and Δσ = 0.5 had the highest final
value (4.88) and the highest yearly excess return (37.52%), but also the highest standard
deviation of returns (0.01782). As further measure of risk, the maximum drawdown
also increased as we increase Δσ .
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Fig. 6 Changing Δσ , out-of-sample performance, 2010–2014

The index itself, being equivalent to a highly-diversified portfolio, generally has
lower volatility (0.00985) than portfolios composed of a smaller amount of assets .
However, the portfolio obtained when Δσ < 0 and α = 0 had a smaller standard
deviation regardless of being composed of less assets. Furthermore, although its final
value is not as high as those when Δσ ≥ 0, it is still much higher than that of the
index, making it a potentially safer choice for investors accostumed to index-tracking
funds.

We run the models for higher values of Δσ , i.e. Δσ > 0.5 but due to space con-
straints we do not report the results here. It was observed that, after a certain level
(Δσ > 0.6), out-of-sample returns tend to drop while standard deviation continues to
increase. Parameters Δσ and Δγ should be adjusted according to investor constraints
and aversion to risk.

In summary, using a benchmark distributionwith a slightly lower standard deviation
tends to provide lower returns on average but at the same time is a “safer” choice,
having better risk characteristics. Increasing standard deviation of the benchmark is a
somewhat riskier choice, but it can provide significantly higher returns.

6 Summary and conclusions

This paper is a natural sequel to our earlier work on the topic of enhanced indexation
based on SSD criterion and reported in Roman et al. (2013). In that approach we com-
puted SSD efficient portfolios that dominate (if possible) an index which is chosen as
the benchmark, that is, the reference distribution. In this paper we introduce a modi-
fied / reshaped benchmark distribution with the purpose of obtaining improved SSD
efficient portfolios, whose return distributions possess superior (desirable) properties.

The first step in reshaping the original benchmark is to increase its skewness. The
amount by which skewness should be increased is specified by the decision maker and
is stated as a proportion of the original skewness. Our numerical results show that, by
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using a reshaped benchmark with higher skewness, we indeed obtain SSD efficient
portfolios with better, that is, shorter left tails, as measured in-sample by CVaR and
skewness.On the other hand, if the skewness of the benchmark is excessively increased,
the improvement in the left tail of the solution portfolio has adverse effects on the rest
of the distribution, with lower returns on average and reduced right tail. We observed
that as long as skewness is not increased excessively, the improvement in the left tail
comes at no or little marginal cost for the rest of the distribution. We observed that,
for an increase in the benchmark skewness of up to 100%, the improvement in the left
tail of the solution portfolio is substantial and comes at virtually no cost to the rest
of the return distribution. The out-of-sample results in this case are also considerably
better than in the case of using the original benchmark.

We also experimented with a reshaped benchmark by changing the standard devi-
ation by various amounts. We observed in Tables 6, 7 and Fig. 6 that reducing the
benchmark standard deviation reflects in portfolios that have lower standard deviations
and better tail characteristics, but also worse overall returns, both in-sample and out-
of-sample (lowermean, skewness, Sharpe and Sortino ratios).Moreover, by increasing
the benchmark standard deviation up to 30% of its original value, we obtained more
volatile portfolios with better overall return characteristics, both in-sample and out-
of-sample (higher mean, standard deviation, skewness, Sharpe and Sortino ratios).
These results are consistent as they are reported for long-only as well as for long-short
combinations (120/20 and 150/50).

We also observed consistent better performance, both in-sample and out-of-sample,
of long-short portfolios as compared to long-only portfolios.

Overall, our numerical experiments have shown that, by reshaping the return dis-
tribution of a financial index and using it as a benchmark in long-short SSD models,
it is possible to obtain superior portfolios with better in-sample and out-of-sample
performance.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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