82 research outputs found

    Limits on spin-dependent WIMP-nucleon cross-sections from the first ZEPLIN-II data

    Get PDF
    The first underground data run of the ZEPLIN-II experiment has set a limit on the nuclear recoil rate in the two-phase xenon detector for direct dark matter searches. In this paper the results from this run are converted into the limits on spin-dependent WIMP-proton and WIMP-neutron cross-sections. The minimum of the curve for WIMP-neutron cross-section corresponds to 0.07 pb at a WIMP mass of around 65 GeV.Comment: 12 pages, 2 figures, to be published in Physics Letters

    The ZEPLIN-III dark matter detector: instrument design, manufacture and commissioning

    Get PDF
    We present details of the technical design and manufacture of the ZEPLIN-III dark matter experiment. ZEPLIN-III is a two-phase xenon detector which measures both the scintillation light and the ionisation charge generated in the liquid by interacting particles and radiation. The instrument design is driven by both the physics requirements and by the technology requirements surrounding the use of liquid xenon. These include considerations of key performance parameters, such as the efficiency of scintillation light collection, restrictions placed on the use of materials to control the inherent radioactivity levels, attainment of high vacuum levels and chemical contamination control. The successful solution has involved a number of novel design and manufacturing features which will be of specific use to future generations of direct dark matter search experiments as they struggle with similar and progressively more demanding requirements.Comment: 25 pages, 19 figures. Submitted to Astropart. Phys. Some figures down sampled to reduce siz

    Studies of a three-stage dark matter and neutrino observatory based on multi-ton combinations of liquid xenon and liquid argon detectors

    Get PDF
    We study a three stage dark matter and neutrino observatory based on multi-ton two-phase liquid Xe and Ar detectors with sufficiently low backgrounds to be sensitive to WIMP dark matter interaction cross sections down to 10E-47 cm^2, and to provide both identification and two independent measurements of the WIMP mass through the use of the two target elements in a 5:1 mass ratio, giving an expected similarity of event numbers. The same detection systems will also allow measurement of the pp solar neutrino spectrum, the neutrino flux and temperature from a Galactic supernova, and neutrinoless double beta decay of 136Xe to the lifetime level of 10E27 - 10E28 y corresponding to the Majorana mass predicted from current neutrino oscillation data. The proposed scheme would be operated in three stages G2, G3, G4, beginning with fiducial masses 1-ton Xe + 5-ton Ar (G2), progressing to 10-ton Xe + 50-ton Ar (G3) then, dependent on results and performance of the latter, expandable to 100-ton Xe + 500-ton Ar (G4). This method of scale-up offers the advantage of utilizing the Ar vessel and ancillary systems of one stage for the Xe detector of the succeeding stage, requiring only one new detector vessel at each stage. Simulations show the feasibility of reducing or rejecting all external and internal background levels to a level <1 events per year for each succeeding mass level, by utilizing an increasing outer thickness of target material as self-shielding. The system would, with increasing mass scale, become increasingly sensitive to annual signal modulation, the agreement of Xe and Ar results confirming the Galactic origin of the signal. Dark matter sensitivities for spin-dependent and inelastic interactions are also included, and we conclude with a discussion of possible further gains from the use of Xe/Ar mixtures

    Measurement of the Atmospheric Muon Charge Ratio at TeV Energies with MINOS

    Get PDF
    The 5.4 kton MINOS far detector has been taking charge-separated cosmic ray muon data since the beginning of August, 2003 at a depth of 2070 meters-water-equivalent in the Soudan Underground Laboratory, Minnesota, USA. The data with both forward and reversed magnetic field running configurations were combined to minimize systematic errors in the determination of the underground muon charge ratio. When averaged, two independent analyses find the charge ratio underground to be 1.374 +/- 0.004 (stat.) +0.012 -0.010(sys.). Using the map of the Soudan rock overburden, the muon momenta as measured underground were projected to the corresponding values at the surface in the energy range 1-7 TeV. Within this range of energies at the surface, the MINOS data are consistent with the charge ratio being energy independent at the two standard deviation level. When the MINOS results are compared with measurements at lower energies, a clear rise in the charge ratio in the energy range 0.3 -- 1.0 TeV is apparent. A qualitative model shows that the rise is consistent with an increasing contribution of kaon decays to the muon charge ratio.Comment: 16 pages, 17 figure

    Measurements of neutrons produced by high-energy muons at the Boulby Underground Laboratory

    Get PDF
    We present the first measurements of the muon-induced neutron flux at the Boulby Underground Laboratory. The experiment was carried out with an 0.73 tonne liquid scintillator that also served as an anticoincidence system for the ZEPLIN-II direct dark matter search. The experimental method exploited the delayed coincidences between high-energy muon signals and gamma-rays from radiative neutron capture on hydrogen or other elements. The muon-induced neutron rate, defined as the average number of detected neutrons per detected muon, was measured as 0.079±0.003 (stat.) neutrons/muon using neutron-capture signals above 0.55 MeV in a time window of 40-190 [mu]s after the muon trigger. Accurate Monte Carlo simulations of the neutron production, transport and detection in a precisely modeled laboratory and experimental setup using the GEANT4 toolkit gave a result 1.8 times higher than the measured value. The difference greatly exceeds all statistical and systematic uncertainties. As the vast majority of neutrons detected in the current setup were produced in lead we evaluated from our measurements the neutron yield in lead as (1.31±0.06)×10-3 neutrons/muon/(g/cm2) for a mean muon energy of about 260 GeV.http://www.sciencedirect.com/science/article/B6TJ1-4SP3SN4-1/1/d863f0e951f0d571b41082e3cc9b081

    Measurements of neutrons produced by high-energy muons at the Boulby Underground Laboratory

    Get PDF
    We present the first measurements of the muon-induced neutron flux at the Boulby Underground Laboratory. The experiment was carried out with an 0.73 tonne liquid scintillator that also served as an anticoincidence system for the ZEPLIN-II direct dark matter search. The experimental method exploited the delayed coincidences between high-energy muon signals and gamma-rays from radiative neutron capture on hydrogen or other elements. The muon-induced neutron rate, defined as the average number of detected neutrons per detected muon, was measured as 0.079±0.0030.079 \pm 0.003 (stat.) neutrons/muon using neutron-capture signals above 0.55 MeV in a time window of 40-190 μ\mus after the muon trigger. Accurate Monte Carlo simulations of the neutron production, transport and detection in a precisely modeled laboratory and experimental setup using the GEANT4 toolkit gave a result 1.8 times higher than the measured value. The difference greatly exceeds all statistical and systematic uncertainties. As the vast majority of neutrons detected in the current setup were produced in lead we evaluated from our measurements the neutron yield in lead as (1.31±0.06)×103(1.31 \pm 0.06) \times 10^{-3} neutrons/muon/(g/cm2^2) for a mean muon energy of about 260 GeV.Comment: 27 pages, 9 figures, to be published in Astroparticle Physic
    corecore