107 research outputs found

    Creep deformation and buttressing capacity of damaged ice shelves: theory and application to Larsen C ice shelf

    Get PDF
    Around the perimeter of Antarctica, much of the ice sheet discharges to the ocean through floating ice shelves. The buttressing provided by ice shelves is critical for modulating the flux of ice into the ocean, and the presently observed thinning of ice shelves is believed to be reducing their buttressing capacity and contributing to the acceleration and thinning of the grounded ice sheet. However, relatively little attention has been paid to the role that fractures play in the ability of ice shelves to sustain and transmit buttressing stresses. Here, we present a new framework for quantifying the role that fractures play in the creep deformation and buttressing capacity of ice shelves. We apply principles of continuum damage mechanics to derive a new analytical relation for the creep of an ice shelf that accounts for the softening influence of fractures on longitudinal deformation using a state damage variable. We use this new analytical relation, combined with a temperature calculation for the ice, to partition an inverse method solution for ice shelf rigidity into independent solutions for softening damage and stabilizing backstress. Using this new approach, field and remote sensing data can be utilized to monitor the structural integrity of ice shelves, their ability to buttress the flow of ice at the grounding line, and thus their indirect contribution to ice sheet mass balance and global sea level. We apply this technique to the Larsen C ice shelf using remote sensing and Operation IceBridge data, finding damage in areas with known crevasses and rifts. Backstress is highest near the grounding line and upstream of ice rises, in agreement with patterns observed on other ice shelves. The ice in contact with the Bawden ice rise is weakened by fractures, and additional damage or thinning in this area could diminish the backstress transmitted upstream. We model the consequences for the ice shelf if it loses contact with this small ice rise, finding that flow speeds would increase by 25% or more over an area the size of the former Larsen B ice shelf. Such a perturbation could potentially destabilize the northern part of Larsen C along pre-existing lines of weakness, highlighting the importance of the feedback between buttressing and fracturing in an ice shelf

    Optimal numerical solvers for transient simulations of ice flow using the Ice Sheet System Model (ISSM versions 4.2.5 and 4.11)

    Get PDF
    Identifying fast and robust numerical solvers is a critical issue that needs to be addressed in order to improve projections of polar ice sheets evolving in a changing climate. This work evaluates the impact of using advanced numerical solvers for transient ice-flow simulations conducted with the JPL–UCI Ice Sheet System Model (ISSM). We identify optimal numerical solvers by testing a broad suite of readily available solvers, ranging from direct sparse solvers to preconditioned iterative methods, on the commonly used Ice Sheet Model Intercomparison Project for Higher-Order ice sheet Models benchmark tests. Three types of analyses are considered: mass transport, horizontal stress balance, and incompressibility. The results of the fastest solvers for each analysis type are ranked based on their scalability across mesh size and basal boundary conditions. We find that the fastest iterative solvers are  ∼ 1.5–100 times faster than the default direct solver used in ISSM, with speed-ups improving rapidly with increased mesh resolution. We provide a set of recommendations for users in search of efficient solvers to use for transient ice-flow simulations, enabling higher-resolution meshes and faster turnaround time. The end result will be improved transient simulations for short-term, highly resolved forward projections (10–100 year time scale) and also improved long-term paleo-reconstructions using higher-order representations of stresses in the ice. This analysis will also enable a new generation of comprehensive uncertainty quantification assessments of forward sea-level rise projections, which rely heavily on ensemble or sampling approaches that are inherently expensive

    Posterior shoulder tightness; an intersession reliability study of 3 clinical tests.

    Get PDF
    Background Although posterior shoulder tightness (PST) has been associated with shoulder pathology and altered glenohumeral joint kinematics, uncertainty remains regarding its cause and definition. To understand the efficacy of treatments for PST, it must be possible to identify people with PST for the purposes of research and clinical decision-making. Clinical tests for PST must demonstrate acceptable levels of measurement reliability in order to identify the condition and to evaluate the response to intervention. There is currently a lack of research describing intersession reliability for measures of PST. The aim of this study was to quantify the inter-session reliability for three clinical tests used to identify PST over a 6–10 week interval. Methods A convenience sample of 26 asymptomatic adult participants (52 shoulders) were recruited from a university setting over a five-month duration. Participants attended the human movement laboratory for measurement of glenohumeral joint internal rotation, horizontal adduction and low flexion on two occasions separated by an interval of 6–10 weeks. Intra-class correlation coefficients were calculated from the mean square values derived from the within-subject, single factor (repeated measures) ANOVA. Test-retest measurement stability was evaluated by calculating the standard error of measurement and the minimum detectable change for each measurement. Results All 3 tests demonstrated good intersession intra-rater reliability (0.86–0.88), and the standard error of measurement (95%) were 7.3° for glenohumeral horizontal adduction, 9.4° for internal rotation, and 6.9° for low flexion. The minimum detectable change for glenohumeral horizontal adduction was 10.2°, internal rotation was 13.3°, and low flexion was 9.7°. Conclusion In this population of people without symptoms, the 3 measures of PST all demonstrated acceptable inter-session reliability. The standard error of measurement and minimum detectable change results can be used to determine if a change in measures of PST are due to measurement error or an actual change over time.Peer reviewe

    CosmoHub: Interactive exploration and distribution of astronomical data on Hadoop

    Get PDF
    We present CosmoHub (https://cosmohub.pic.es), a web application based on Hadoop to perform interactive exploration and distribution of massive cosmological datasets. Recent Cosmology seeks to unveil the nature of both dark matter and dark energy mapping the large-scale structure of the Universe, through the analysis of massive amounts of astronomical data, progressively increasing during the last (and future) decades with the digitization and automation of the experimental techniques. CosmoHub, hosted and developed at the Port d'Informació Científica (PIC), provides support to a worldwide community of scientists, without requiring the end user to know any Structured Query Language (SQL). It is serving data of several large international collaborations such as the Euclid space mission, the Dark Energy Survey (DES), the Physics of the Accelerating Universe Survey (PAUS) and the Marenostrum Institut de Ciències de l'Espai (MICE) numerical simulations. While originally developed as a PostgreSQL relational database web frontend, this work describes the current version of CosmoHub, built on top of Apache Hive, which facilitates scalable reading, writing and managing huge datasets. As CosmoHub's datasets are seldomly modified, Hive it is a better fit. Over 60 TiB of cataloged information and 50×10 astronomical objects can be interactively explored using an integrated visualization tool which includes 1D histogram and 2D heatmap plots. In our current implementation, online exploration of datasets of 10 objects can be done in a timescale of tens of seconds. Users can also download customized subsets of data in standard formats generated in few minutes.CosmoHub has been partially funded through projects of the Spanish national program “Programa Estatal de I + D + i” of the Spanish government. The support of the ERDF fund is gratefully acknowledged

    Protocol for the CUPIDO trials; multicenter randomized controlled trials to assess the value of combining prolapse surgery and incontinence surgery in patients with genital prolapse and evident stress incontinence (CUPIDO I) and in patients with genital prolapse and occult stress incontinence (CUPIDO II)

    Get PDF
    Background: About 40% of all patients with genital prolapse report stress-incontinence. In about half of the 60% patients that do not report stress-incontinence, occult urinary stress-incontinence can be detected. In these patients stress-incontinence is masked due to kinking or compression of the urethra by the prolapse. In case surgical correction is indicated there are two strategies to manage patients with combined prolapse and (occult) stress incontinence. This strategy is either (i) a combination of prolapse surgery and stress-incontinence surgery or (ii) to correct the prolapse first and evaluate afterwards whether additional stress-incontinence surgery is indicated. The advantage of combining prolapse and stress-incontinence surgery is that only few patients report stress-incontinence following such combination. However, this combination has been associated with an increased risk on complications, of which the development of obstructive micturition symptoms, overactive bladder symptoms and bladder retention are the most important ones. Furthermore, combining two procedures may be unnecessary as performing only prolapse surgery may cure stress-incontinence In the randomized CUPIDO trials both strategies are compared in patients with prolapse and evident stress incontinence (CUPIDO I trial) and in patients with prolapse and occult stress incontinence (CUPIDO II trial). Methods/Design: The CUPIDO trials are two multicenter randomized controlled trials in which women with stress urinary incontinence (SUI) or occult stress urinary incontinence (OSUI) are randomized to prolapse surgery combined with anti incontinence surgery (concomitant surgery) or to prolapse surgery only. Patients with at least stage 2 POP are eligible, women with evident SUI are randomized in CUPIDO I. Patients without SUI are eligible for CUPIDO II and will have urodynamic evaluation or a standardized redression test. Women with OSUI are randomized, women without OSUI are followed up but not randomized. The primary outcome measure is absence of SUI twelve months after surgery. Furthermore, economic evaluations are conducted, and the effectiveness of urodynamic investigation is evaluated against a non-invasive way to determine SUI in women with POP. A total of 450 women will be included in the study

    Results of the third Marine Ice Sheet Model Intercomparison Project (MISMIP+)

    Get PDF
    We present the result of the third Marine Ice Sheet Model Intercomparison Project, MISMIP+. MISMIP+ is intended to be a benchmark for ice-flow models which include fast sliding marine ice streams and floating ice shelves and in particular a treatment of viscous stress that is sufficient to model buttressing, where upstream ice flow is restrained by a downstream ice shelf. A set of idealized experiments first tests that models are able to maintain a steady state with the grounding line located on a retrograde slope due to buttressing and then explore scenarios where a reduction in that buttressing causes ice stream acceleration, thinning, and grounding line retreat. The majority of participating models passed the first test and then produced similar responses to the loss of buttressing. We find that the most important distinction between models in this particular type of simulation is in the treatment of sliding at the bed, with other distinctions – notably the difference between the simpler and more complete treatments of englacial stress but also the differences between numerical methods – taking a secondary role

    The short-term effect of swimming training load on shoulder rotational range of motion, shoulder joint position sense and pectoralis minor length

    Get PDF
    Background: Shoulder pain or injury is the most common issue facing elite competitive swimmers and the most frequent reason for missed or modified training. Literature suggests that highly repetitive upper limb loading leads to inappropriate adaptations within the shoulder complex. The most likely maladaptations to occur are variations in shoulder rotational range of motion, reduction in joint position sense and shortened pectoralis minor length. This has yet to have been confirmed in experimental studies. The aim of this study was to investigate the short-term effects of swimming training load upon internal and external rotation range of motion, joint position sense and pectoralis minor length. Method: Sixteen elite swimmers training in the British Swimming World Class programme participated. Measures of internal and external range of motion, joint position sense error score and pectoralis minor length were taken before and after a typical 2h swimming session. Results: Following swimming training shoulder external rotation range of motion and pectoralis minor length reduced significantly (-3.4°,p=<0.001 and -0.7cm, p=<0.001, respectively), joint position sense error increased significantly (+2.0° error angle, p=<0.001). Internal rotation range of motion demonstrated no significant change (-0.6, p=0.53). Discussion: This study determined that elite level swimming training results in short-term maladaptive changes in shoulder performance that could potentially predispose them to injury
    corecore