61 research outputs found

    Renormalization of gauge fields using Hopf algebras

    Get PDF
    We describe the Hopf algebraic structure of Feynman graphs for non-abelian gauge theories, and prove compatibility of the so-called Slavnov-Taylor identities with the coproduct. When these identities are taken into account, the coproduct closes on the Green's functions, which thus generate a Hopf subalgebra.Comment: 16 pages, 1 figure; uses feynmp. To appear in "Recent Developments in Quantum Field Theory". Eds. B. Fauser, J. Tolksdorf and E. Zeidler. Birkhauser Verlag, Basel 200

    Spitzer's Identity and the Algebraic Birkhoff Decomposition in pQFT

    Full text link
    In this article we continue to explore the notion of Rota-Baxter algebras in the context of the Hopf algebraic approach to renormalization theory in perturbative quantum field theory. We show in very simple algebraic terms that the solutions of the recursively defined formulae for the Birkhoff factorization of regularized Hopf algebra characters, i.e. Feynman rules, naturally give a non-commutative generalization of the well-known Spitzer's identity. The underlying abstract algebraic structure is analyzed in terms of complete filtered Rota-Baxter algebras.Comment: 19 pages, 2 figure

    Wafer-scale selective area growth of GaN hexagonal prismatic nanostructures on c-sapphire substrate

    Get PDF
    Selective area growth of GaN nanostructures has been performed on full 2" c-sapphire substrates using Si3N4 mask patterned by nanoimprint lithography (array of 400 nm diameter circular holes). A new process has been developed to improve the homogeneity of the nucleation selectivity of c-oriented hexagonal prismatic nanostructures at high temperature (1040\circ C). It consists of an initial GaN nucleation step at 950 \circ C followed by ammonia annealing before high temperature growth. Structural analyses show that GaN nanostructures are grown in epitaxy with c-sapphire with lateral overgrowths on the mask. Strain and dislocations are observed at the interface due to the large GaN/sapphire lattice mismatch in contrast with the high quality of the relaxed crystals in the lateral overgrowth area. A cathodoluminescence study as a function of the GaN nanostructure size confirms these observations: the lateral overgrowth of GaN nanostructures has a low defect density and exhibits a stronger near band edge (NBE) emission than the crystal in direct epitaxy with sapphire. The shift of the NBE positions versus nanostructure size can be mainly attributed to a combination of compressive strain and silicon doping coming from surface mask diffusion

    Critical aspects of substrate nanopatterning for the ordered growth of GaN nanocolumns

    Get PDF
    Precise and reproducible surface nanopatterning is the key for a successful ordered growth of GaN nanocolumns. In this work, we point out the main technological issues related to the patterning process, mainly surface roughness and cleaning, and mask adhesion to the substrate. We found that each of these factors, process-related, has a dramatic impact on the subsequent selective growth of the columns inside the patterned holes. We compare the performance of e-beam lithography, colloidal lithography, and focused ion beam in the fabrication of hole-patterned masks for ordered columnar growth. These results are applicable to the ordered growth of nanocolumns of different materials

    miR-Q: a novel quantitative RT-PCR approach for the expression profiling of small RNA molecules such as miRNAs in a complex sample

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are small endogenous non-coding interfering RNA molecules regarded as major regulators in eukaryotic gene expression. Different methods are employed for miRNA expression profiling. For a better understanding of their role in essential biological processes, convenient methods for differential miRNA expression analysis are required.</p> <p>Results</p> <p>Here, we present the miR-Q assay as a highly sensitive quantitative reverse transcription PCR (qRT-PCR) for expression analysis of small RNAs such as miRNA molecules. It shows a high dynamic range of 6 to 8 orders of magnitude comprising a sensitivity of up to 0.2 fM miRNA, which corresponds to single copies per cell. There is nearly no cross reaction among closely-related miRNA family members, which points to the high specificity of the assays. Using this approach, we quantified the expression of let-7b in different human cell lines as well as miR-145 and miR-21 expression in porcine intestinal samples.</p> <p>Conclusion</p> <p>miR-Q is a cost-effective and highly specific approach, which neither requires the use of fluorochromic probes, nor Locked Nucleic Acid (LNA)-modified oligonucleotides. Moreover, it provides a remarkable increase in specificity and simplified detection of small RNAs.</p

    Thermal-elastic stresses and the criticality of the continental crust

    Get PDF
    Heating or cooling can lead to high stresses in rocks due to the different thermal-elastic properties of minerals. In the upper 4 km of the crust, such internal stresses might cause fracturing. Yet it is unclear if thermal elasticity contributes significantly to critical stresses and failure deeper in Earth's continental crust, where ductile creep causes stress relaxation. We combined a heating experiment conducted in a Synchrotron microtomograph (Advanced Photon Source, USA) with numerical simulations to calculate the grain-scale stress field in granite generated by slow burial. We find that deviatoric stresses >100 MPa can be stored during burial, with relaxation times from 100's to 1000's ka, even in the ductile crust. Hence, grain-scale thermal-elastic stresses may serve as nuclei for instabilities, thus rendering the continental crust close to criticality

    Methylation profiling of Epstein-Barr virus immediate-early gene promoters, BZLF1 and BRLF1 in tumors of epithelial, NK- and B-cell origins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epstein-Barr virus (EBV) establishes its latency in EBV-associated malignancies, accompanied by occasionally reactivated lytic cycle. Promoter CpG methylation of EBV genome plays an essential role in maintaining viral latency. Two immediate-early (IE) genes, BZLF1 and BRLF1, induce the switch from latent to lytic infection. Studies of methylation-dependent binding of BZLF1 and BRLF1 to EBV promoters have been well reported, but little is known about the methylation status of <it>BZLF1 </it>and <it>BRLF1 </it>promoters (Zp and Rp) in tumor samples.</p> <p>Methods</p> <p>We evaluated the methylation profiles of Zp and Rp by methylation-specific PCR (MSP) and bisulfite genomic sequencing (BGS), as well as <it>BZLF1 </it>and <it>BRLF1 </it>expression by semiquantitative reverse transcription (RT)-PCR in tumors of epithelial, NK- and B-cell origins.</p> <p>Results</p> <p>We found that both Zp and Rp were hypermethylated in all studied EBV-positive cell lines and tumors of lymphoid (B- or NK cell) or epithelial origin, while unmethylated Zp and Rp alleles were detected in cell lines expressing <it>BZLF1 </it>and <it>BRLF1</it>. Following azacytidine treatment or combined with trichostatin A (TSA), the expression of <it>BZLF1 </it>and <it>BRLF1 </it>was restored along with concomitant promoter demethylation, which subsequently induced the reactivation of early lytic gene <it>BHRF1 </it>and late lytic gene <it>BLLF1</it>.</p> <p>Conclusions</p> <p>Hypermethylation of Zp and Rp mediates the frequent silencing of <it>BZLF1 </it>and <it>BRLF1 </it>in EBV-associated tumors, which could be reactivated by demethylation agent and ultimately initiated the EBV lytic cascade.</p

    CpG-Methylation Regulates a Class of Epstein-Barr Virus Promoters

    Get PDF
    DNA methylation is the major modification of eukaryotic genomes and plays an essential role in mammalian gene regulation. In general, cytosine-phosphatidyl-guanosine (CpG)-methylated promoters are transcriptionally repressed and nuclear proteins such as MECP2, MBD1, MBD2, and MBD4 bind CpG-methylated DNA and contribute to epigenetic silencing. Methylation of viral DNA also regulates gene expression of Epstein-Barr virus (EBV), which is a model of herpes virus latency. In latently infected human B cells, the viral DNA is CpG-methylated, the majority of viral genes is repressed and virus synthesis is therefore abrogated. EBV's BZLF1 encodes a transcription factor of the AP-1 family (Zta) and is the master gene to overcome viral gene repression. In a genome-wide screen, we now identify and characterize those viral genes, which Zta regulates. Among them are genes essential for EBV's lytic phase, which paradoxically depend on strictly CpG-methylated promoters for their Zta-induced expression. We identified novel DNA recognition motifs, termed meZRE (methyl-Zta-responsive element), which Zta selectively binds in order to ‘read’ DNA in a methylation- and sequence-dependent manner unlike any other known protein. Zta is a homodimer but its binding characteristics to meZREs suggest a sequential, non-palindromic and bipartite DNA recognition element, which confers superior DNA binding compared to CpG-free ZREs. Our findings indicate that Zta has evolved to transactivate cytosine-methylated, hence repressed, silent promoters as a rule to overcome epigenetic silencing
    corecore