69 research outputs found
Gradio: Project proposal for satellite gradiometry
A gradiometric approach, rather than the more complicated satellite to satellite tracking, is proposed for studying anomalies in the gravitational fields of the Earth and, possibly, other telluric bodies. The first analyses of a gradiometer based on four of ONERA's CACTUS or SUPERCACTUS accelerometers are summarized. it is shown that the obstacles to achieving the required accuracy are not insuperable. The device will be carried in a 1000 kg lens shaped satellite in a heliosynchronous orbit 200 to 300 km in altitude. The first launching is planned for the end of 1987
Joint Europa Mission (JEM): a multi-scale study of Europa to characterize its habitability and search for extant life
Europa is the closest and probably the most promising target to search for extant life in the Solar System, based on complementary evidence that it may fulfil the key criteria for habitability: the Galileo discovery of a sub-surface ocean; the many indications that the ice shell is active and may be partly permeable to transfer of chemical species, biomolecules and elementary forms of life; the identification of candidate thermal and chemical energy sources necessary to drive a metabolic activity near the ocean floor. In this article we are proposing that ESA collaborates with NASA to design and fly jointly an ambitious and exciting planetary mission, which we call the Joint Europa Mission (JEM), to reach two objectives: perform a full characterization of Europa's habitability with the capabilities of a Europa orbiter, and search for bio-signatures in the environment of Europa (surface, subsurface and exosphere) by the combination of an orbiter and a lander. JEM can build on the advanced understanding of this system which the missions preceding JEM will provide: Juno, JUICE and Europa Clipper, and on the Europa lander concept currently designed by NASA (Maize, report to OPAG, 2019). We propose the following overarching goals for our Joint Europa Mission (JEM): Understand Europa as a complex system responding to Jupiter system forcing, characterize the habitability of its potential biosphere, and search for life at its surface and in its sub-surface and exosphere. We address these goals by a combination of five Priority Scientific Objectives, each with focused measurement objectives providing detailed constraints on the science payloads and on the platforms used by the mission. The JEM observation strategy will combine three types of scientific measurement sequences: measurements on a high-latitude, low-altitude Europan orbit; in-situ measurements to be performed at the surface, using a soft lander; and measurements during the final descent to Europa's surface. The implementation of these three observation sequences will rest on the combination of two science platforms: a soft lander to perform all scientific measurements at the surface and sub-surface at a selected landing site, and an orbiter to perform the orbital survey and descent sequences. We describe a science payload for the lander and orbiter that will meet our science objectives. We propose an innovative distribution of roles for NASA and ESA; while NASA would provide an SLS launcher, the lander stack and most of the mission operations, ESA would provide the carrier-orbiter-relay platform and a stand-alone astrobiology module for the characterization of life at Europa's surface: the Astrobiology Wet Laboratory (AWL). Following this approach, JEM will be a major exciting joint venture to the outer Solar System of NASA and ESA, working together toward one of the most exciting scientific endeavours of the 21st century: to search for life beyond our own planet
DETERMINISTICALLY-MODIFIED INTEGRAL ESTIMATORS OF GRAVITATIONAL TENSOR
The Earth's global gravity field modelling is an important subject in Physical Geodesy. For this purpose different satellite gravimetry missions have been designed and launched. Satellite gravity gradiometry (SGG) is a technique to measure the second-order derivatives of the gravity field. The gravity field and steady state ocean circulation explorer (GOCE) is the first satellite mission which uses this technique and is dedicated to recover Earth's gravity models (EGMs) up to medium wavelengths. The existing terrestrial gravimetric data and EGM scan be used for validation of the GOCE data prior to their use. In this research, the tensor of gravitation in the local north-oriented frame is generated using deterministically-modified integral estimators involving terrestrial data and EGMs. The paper presents that the SGG data is assessable with an accuracy of 1-2 mE in Fennoscandia using a modified integral estimatorby the Molodensky method. A degree of modification of 100 and an integration cap size of for integrating terrestrial data are proper parameters for the estimator
The European gravity field and steady-state ocean circulation explorer satellite mission: its impact on geophysics
Current knowledge of the Earth’s gravity field and its geoid, as derived from various observing techniques and sources, is incomplete. Within a reasonable time, substantial improvement will come by exploiting new approaches based on spaceborne gravity observation. Among these, the European Space Agency (ESA) Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite mission concept has been conceived and designed taking into account multi-disciplinary research objectives in solid Earth physics, oceanography and geodesy. Based on the unique capability of a gravity gradiometer combined with satellite-to-satellite high-low tracking techniques, an accurate and detailed global model of the Earth’s gravity field and its corresponding geoid will be recovered. The importance of this is demonstrated by a series of realistic simulation experiments. In particular, the quantitative impact of the new and accurate gravity field and geoid is examined in studies of tectonic composition and motion, Glaciological Isostatic Adjustment, ocean mesoscale variability, water mass transport, and unification of height systems. Improved knowledge in each of these fields will also ensure the accumulation of new understanding of past and present sea-level changes
The European Gravity Field and Steady-State Ocean Circulation Explorer Satellite Mission: Its impact on geophysics.
International audienceCurrent knowledge of the Earth's gravity field and its geoid, as derived from various observing techniques and sources, is incomplete. Within a reasonable time, substantial improvement will come by exploiting new approaches based on spaceborne gravity observation. Among these, the European Space Agency (ESA) Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite mission concept has been conceived and designed taking into account multi-disciplinary research objectives in solid Earth physics, oceanography and geodesy. Based on the unique capability of a gravity gradiometer combined with satellite-to-satellite high-low tracking techniques, an accurate and detailed global model of the Earth's gravity field and its corresponding geoid will be recovered. The importance of this is demonstrated by a series of realistic simulation experiments. In particular, the quantitative impact of the new and accurate gravity field and geoid is examined in studies of tectonic composition and motion, Glaciological Isostatic Adjustment, ocean mesoscale variability, water mass transport, and unification of height systems. Improved knowledge in each of these fields will also ensure the accumulation of new understanding of past and present sea-level changes
- …