96 research outputs found

    Dislocation Emission around Nanoindentations on a (001) fcc Metal Surface Studied by STM and Atomistic Simulations

    Full text link
    We present a combined study by Scanning Tunneling Microscopy and atomistic simulations of the emission of dissociated dislocation loops by nanoindentation on a (001) fcc surface. The latter consist of two stacking-fault ribbons bounded by Shockley partials and a stair-rod dislocation. These dissociated loops, which intersect the surface, are shown to originate from loops of interstitial character emitted along the directions and are usually located at hundreds of angstroms away from the indentation point. Simulations reproduce the nucleation and glide of these dislocation loops.Comment: 10 pages, 4 figure

    NbS3_{3}: A unique quasi one-dimensional conductor with three charge density wave transitions

    Full text link
    Through transport, compositional and structural studies, we review the features of the charge-density wave (CDW) conductor of NbS3_{3} (phase II). We highlight three central results: 1) In addition to the previously reported CDW transitions at TP1T_{P1} = 360\,K and TP2T_{P2} = 150\,K, another CDW transition occurs at a much higher temperature TP0T_{P0} = 620-650\,K; evidence for the non-linear conductivity of this CDW is presented. 2) We show that CDW associated with the TP2T_{P2} - transition arises from S vacancies acting as donors. Such a CDW transition has not been observed before. 3) We show exceptional coherence of the TP1T_{P1}-CDW at room-temperature. Additionally, we report on the effects of uniaxial strain on the CDW transition temperatures and transport.Comment: 16 pages, 18 figure

    The late-time behaviour of vortic Bianchi type VIII Universes

    Full text link
    We use the dynamical systems approach to investigate the Bianchi type VIII models with a tilted γ\gamma-law perfect fluid. We introduce expansion-normalised variables and investigate the late-time asymptotic behaviour of the models and determine the late-time asymptotic states. For the Bianchi type VIII models the state space is unbounded and consequently, for all non-inflationary perfect fluids, one of the curvature variables grows without bound. Moreover, we show that for fluids stiffer than dust (1<γ<21<\gamma<2), the fluid will in general tend towards a state of extreme tilt. For dust (γ=1\gamma=1), or for fluids less stiff than dust (0<γ<10<\gamma< 1), we show that the fluid will in the future be asymptotically non-tilted. Furthermore, we show that for all γ1\gamma\geq 1 the universe evolves towards a vacuum state but does so rather slowly, ρ/H21/lnt\rho/H^2\propto 1/\ln t.Comment: 19 pages, 3 ps figures, v2:typos fixed, refs and more discussion adde

    Chromosomal-level assembly of the Asian Seabass genome using long sequence reads and multi-layered scaffolding

    Get PDF
    We report here the ~670 Mb genome assembly of the Asian seabass (Lates calcarifer), a tropical marine teleost. We used long-read sequencing augmented by transcriptomics, optical and genetic mapping along with shared synteny from closely related fish species to derive a chromosome-level assembly with a contig N50 size over 1 Mb and scaffold N50 size over 25 Mb that span ~90% of the genome. The population structure of L. calcarifer species complex was analyzed by re-sequencing 61 individuals representing various regions across the species' native range. SNP analyses identified high levels of genetic diversity and confirmed earlier indications of a population stratification comprising three clades with signs of admixture apparent in the South-East Asian population. The quality of the Asian seabass genome assembly far exceeds that of any other fish species, and will serve as a new standard for fish genomics

    Biological and Clinical Implications of Gene-Expression Profiling in Diffuse Large B-Cell Lymphoma:A Proposal for a Targeted BLYM-777 Consortium Panel as Part of a Multilayered Analytical Approach

    Get PDF
    Gene-expression profiling (GEP) is used to study the molecular biology of lymphomas. Here, advancing insights from GEP studies in diffuse large B-cell lymphoma (DLBCL) lymphomagenesis are discussed. GEP studies elucidated subtypes based on cell-of-origin principles and profoundly changed the biological understanding of DLBCL with clinical relevance. Studies integrating GEP and next-generation DNA sequencing defined different molecular subtypes of DLBCL entities originating at specific anatomical localizations. With the emergence of high-throughput technologies, the tumor microenvironment (TME) has been recognized as a critical component in DLBCL pathogenesis. TME studies have characterized so-called “lymphoma microenvironments" and “ecotypes”. Despite gained insights, unexplained chemo-refractoriness in DLBCL remains. To further elucidate the complex biology of DLBCL, we propose a novel targeted GEP consortium panel, called BLYM-777. This knowledge-based biology-driven panel includes probes for 777 genes, covering many aspects regarding B-cell lymphomagenesis (f.e., MYC signature, TME, immune surveillance and resistance to CAR T-cell therapy). Regarding lymphomagenesis, upcoming DLBCL studies need to incorporate genomic and transcriptomic approaches with proteomic methods and correlate these multi-omics data with patient characteristics of well-defined and homogeneous cohorts. This multilayered methodology potentially enhances diagnostic classification of DLBCL subtypes, prognostication, and the development of novel targeted therapeutic strategies. Simple Summary: This review summarizes gene-expression profiling insights into the background and origination of diffuse large B-cell lymphomas (DLBCL). To further unravel the molecular biology of these lymphomas, a consortium panel called BLYM-777 was designed including genes important for subtype classifications, genetic pathways, tumor-microenvironment, immune response and resistance to targeted therapies. This review proposes to combine this transcriptomic method with genomics, proteomics, and patient characteristics to facilitate diagnostic classification, prognostication, and the development of new targeted therapeutic strategies in DLBCL

    PedHunter 2.0 and its usage to characterize the founder structure of the Old Order Amish of Lancaster County

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Because they are a closed founder population, the Old Order Amish (OOA) of Lancaster County have been the subject of many medical genetics studies. We constructed four versions of Anabaptist Genealogy Database (AGDB) using three sources of genealogies and multiple updates. In addition, we developed PedHunter, a suite of query software that can solve pedigree-related problems automatically and systematically.</p> <p>Methods</p> <p>We report on how we have used new features in PedHunter to quantify the number and expected genetic contribution of founders to the OOA. The queries and utility of PedHunter programs are illustrated by examples using AGDB in this paper. For example, we calculated the number of founders expected to be contributing genetic material to the present-day living OOA and estimated the mean relative founder representation for each founder. New features in PedHunter also include pedigree trimming and pedigree renumbering, which should prove useful for studying large pedigrees.</p> <p>Results</p> <p>With PedHunter version 2.0 querying AGDB version 4.0, we identified 34,160 presumed living OOA individuals and connected them into a 14-generation pedigree descending from 554 founders (332 females and 222 males) after trimming. From the analysis of cumulative mean relative founder representation, 128 founders (78 females and 50 males) accounted for over 95% of the mean relative founder contribution among living OOA descendants.</p> <p>Discussion/Conclusions</p> <p>The OOA are a closed founder population in which a modest number of founders account for the genetic variation present in the current OOA population. Improvements to the PedHunter software will be useful in future studies of both the OOA and other populations with large and computerized genealogies.</p

    Effect of P to A Mutation of the N-Terminal Residue Adjacent to the Rgd Motif on Rhodostomin: Importance of Dynamics in Integrin Recognition

    Get PDF
    Rhodostomin (Rho) is an RGD protein that specifically inhibits integrins. We found that Rho mutants with the P48A mutation 4.4–11.5 times more actively inhibited integrin α5β1. Structural analysis showed that they have a similar 3D conformation for the RGD loop. Docking analysis also showed no difference between their interactions with integrin α5β1. However, the backbone dynamics of RGD residues were different. The values of the R2 relaxation parameter for Rho residues R49 and D51 were 39% and 54% higher than those of the P48A mutant, which caused differences in S2, Rex, and τe. The S2 values of the P48A mutant residues R49, G50, and D51 were 29%, 14%, and 28% lower than those of Rho. The Rex values of Rho residues R49 and D51 were 0.91 s−1 and 1.42 s−1; however, no Rex was found for those of the P48A mutant. The τe values of Rho residues R49 and D51 were 9.5 and 5.1 times lower than those of P48A mutant. Mutational study showed that integrin α5β1 prefers its ligands to contain (G/A)RGD but not PRGD sequences for binding. These results demonstrate that the N-terminal proline residue adjacent to the RGD motif affect its function and dynamics, which suggests that the dynamic properties of the RGD motif may be important in Rho's interaction with integrin α5β1

    Computational Characterization of 3′ Splice Variants in the GFAP Isoform Family

    Get PDF
    Glial fibrillary acidic protein (GFAP) is an intermediate filament (IF) protein specific to central nervous system (CNS) astrocytes. It has been the subject of intense interest due to its association with neurodegenerative diseases, and because of growing evidence that IF proteins not only modulate cellular structure, but also cellular function. Moreover, GFAP has a family of splicing isoforms apparently more complex than that of other CNS IF proteins, consistent with it possessing a range of functional and structural roles. The gene consists of 9 exons, and to date all isoforms associated with 3′ end splicing have been identified from modifications within intron 7, resulting in the generation of exon 7a (GFAPδ/ε) and 7b (GFAPκ). To better understand the nature and functional significance of variation in this region, we used a Bayesian multiple change-point approach to identify conserved regions. This is the first successful application of this method to a single gene – it has previously only been used in whole-genome analyses. We identified several highly or moderately conserved regions throughout the intron 7/7a/7b regions, including untranslated regions and regulatory features, consistent with the biology of GFAP. Several putative unconfirmed features were also identified, including a possible new isoform. We then integrated multiple computational analyses on both the DNA and protein sequences from the mouse, rat and human, showing that the major isoform, GFAPα, has highly conserved structure and features across the three species, whereas the minor isoforms GFAPδ/ε and GFAPκ have low conservation of structure and features at the distal 3′ end, both relative to each other and relative to GFAPα. The overall picture suggests distinct and tightly regulated functions for the 3′ end isoforms, consistent with complex astrocyte biology. The results illustrate a computational approach for characterising splicing isoform families, using both DNA and protein sequences
    corecore