Abstract

We use the dynamical systems approach to investigate the Bianchi type VIII models with a tilted γ\gamma-law perfect fluid. We introduce expansion-normalised variables and investigate the late-time asymptotic behaviour of the models and determine the late-time asymptotic states. For the Bianchi type VIII models the state space is unbounded and consequently, for all non-inflationary perfect fluids, one of the curvature variables grows without bound. Moreover, we show that for fluids stiffer than dust (1<γ<21<\gamma<2), the fluid will in general tend towards a state of extreme tilt. For dust (γ=1\gamma=1), or for fluids less stiff than dust (0<γ<10<\gamma< 1), we show that the fluid will in the future be asymptotically non-tilted. Furthermore, we show that for all γ1\gamma\geq 1 the universe evolves towards a vacuum state but does so rather slowly, ρ/H21/lnt\rho/H^2\propto 1/\ln t.Comment: 19 pages, 3 ps figures, v2:typos fixed, refs and more discussion adde

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 25/03/2019