2,977 research outputs found

    Simbol-X capability of detecting the non-thermal emission of stellar flares

    Get PDF
    We investigate the capability of detecting, with Simbol-X, non-thermal emission during stellar flares, and distinguishing it from hot thermal emission. We find that flare non-thermal emission is detectable when at least ~20 cts are detected with the CZT detector in the 20-80 keV band. Therefore Simbol-X will detect the non-thermal emission from some of the X-ray brightest nearby stars, whether the thermal vs. non-thermal relation, derived for solar flares, holds.Comment: 2 pages, 2 postscript figures, proceedings of the workshop "Simbol-X: the hard X-ray universe in focus", to be published in "Memorie of the Italian Astronomical Society

    Discrete-time dynamic modeling for software and services composition as an extension of the Markov chain approach

    Get PDF
    Discrete Time Markov Chains (DTMCs) and Continuous Time Markov Chains (CTMCs) are often used to model various types of phenomena, such as, for example, the behavior of software products. In that case, Markov chains are widely used to describe possible time-varying behavior of “self-adaptive” software systems, where the transition from one state to another represents alternative choices at the software code level, taken according to a certain probability distribution. From a control-theoretical standpoint, some of these probabilities can be interpreted as control signals and others can just be observed. However, the translation between a DTMC or CTMC model and a corresponding first principle model, that can be used to design a control system is not immediate. This paper investigates a possible solution for translating a CTMC model into a dynamic system, with focus on the control of computing systems components. Notice that DTMC models can be translated as well, providing additional information

    Strong-coupling analysis of scanning tunneling spectra in Bi2_2Sr2_2Ca2_2Cu3_3O10+δ_{10+\delta}

    Full text link
    We study a series of spectra measured in the superconducting state of optimally-doped Bi-2223 by scanning tunneling spectroscopy. Each spectrum, as well as the average of spectra presenting the same gap, is fitted using a strong-coupling model taking into account the band structure, the BCS gap, and the interaction of electrons with the spin resonance. After describing our measurements and the main characteristics of the strong-coupling model, we report the whole set of parameters determined from the fits, and we discuss trends as a function of the gap magnitude. We also simulate angle-resolved photoemission spectra, and compare with recent experimental results.Comment: Published versio

    A coordinated optical and X-ray spectroscopic campaign on HD179949: searching for planet-induced chromospheric and coronal activity

    Get PDF
    HD179949 is an F8V star, orbited by a close-in giant planet with a period of ~3 days. Previous studies suggested that the planet enhances the magnetic activity of the parent star, producing a chromospheric hot spot which rotates in phase with the planet orbit. However, this phenomenon is intermittent since it was observed in several but not all seasons. A long-term monitoring of the magnetic activity of HD179949 is required to study the amplitude and time scales of star-planet interactions. In 2009 we performed a simultaneous optical and X-ray spectroscopic campaign to monitor the magnetic activity of HD179949 during ~5 orbital periods and ~2 stellar rotations. We analyzed the CaII H&K lines as a proxy for chromospheric activity, and we studied the X-ray emission in search of flux modulations and to determine basic properties of the coronal plasma. A detailed analysis of the flux in the cores of the CaII H&K lines and a similar study of the X-ray photometry shows evidence of source variability, including one flare. The analysis of the the time series of chromospheric data indicates a modulation with a ~11 days period, compatible with the stellar rotation period at high latitudes. Instead, the X-ray light curve suggests a signal with a period of ~4 days, consistent with the presence of two active regions on opposite hemispheres. The observed variability can be explained, most likely, as due to rotational modulation and to intrinsic evolution of chromospheric and coronal activity. There is no clear signature related to the orbital motion of the planet, but the possibility that just a fraction of the chromospheric and coronal variability is modulated with the orbital period of the planet, or the stellar-planet beat period, cannot be excluded. We conclude that any effect due to the presence of the planet is difficult to disentangle

    Scaling laws of solar and stellar flares

    Full text link
    In this study we compile for the first time comprehensive data sets of solar and stellar flare parameters, including flare peak temperatures T_p, flare peak volume emission measures EM_p, and flare durations t_f from both solar and stellar data, as well as flare length scales L from solar data. Key results are that both the solar and stellar data are consistent with a common scaling law of EM_p ~ T_p^4.7, but the stellar flares exhibit ~250 times higher emission measures (at the same flare peak temperature). For solar flares we observe also systematic trends for the flare length scale L(T_p) ~ T_p^0.9 and the flare duration t_F(T_p) ~ T_p^0.9 as a function of the flare peak temperature. Using the theoretical RTV scaling law and the fractal volume scaling observed for solar flares, i.e., V(L) ~ L^2.4, we predict a scaling law of EM_p ~ T_p^4.3, which is consistent with observations, and a scaling law for electron densities in flare loops, n_p ~ T_p^2/L ~ T_p^1.1. The RTV-predicted electron densities were also found to be consistent with densities inferred from total emission measures, n_p=(EM_p/q_V*V)^1/2, using volume filling factors of q_V=0.03-0.08 constrained by fractal dimensions measured in solar flares. Our results affect also the determination of radiative and conductive cooling times, thermal energies, and frequency distributions of solar and stellar flare energies.Comment: 9 Figs., (paper in press, The Astrophsycial Journal

    Imaging the essential role of spin-fluctuations in high-Tc superconductivity

    Get PDF
    We have used scanning tunneling spectroscopy to investigate short-length electronic correlations in three-layer Bi2Sr2Ca2Cu3O(10+d) (Bi-2223). We show that the superconducting gap and the energy Omega_dip, defined as the difference between the dip minimum and the gap, are both modulated in space following the lattice superstructure, and are locally anti-correlated. Based on fits of our data to a microscopic strong-coupling model we show that Omega_dip is an accurate measure of the collective mode energy in Bi-2223. We conclude that the collective mode responsible for the dip is a local excitation with a doping dependent energy, and is most likely the (pi,pi) spin resonance.Comment: 4 pages, 4 figure

    Devolatilization of organo-sulfur compounds in coal gasification

    Get PDF
    Coal gasification is a thermo-chemical process aiming at the production of high heating value syngas. The coal charges present, typically, a low quantity of sulfur compounds for prevent the formation of a large amount of sulfuric acid (H2S), that is a pollutant and a poison for catalysts, in syngas stream. However, in the world there are a lot of coals that cannot be used for gasification because of their high sulfur content (e.g. Sulcis Italian coal or Inner Mongolia Chinese coal). The interest on these types of coal is increasing due to a novel technology that allows to convert H2S and CO2into syngas (AG2S\u2122). The aim of this work is to propose a predictive kinetic model of the release of sulfur compounds (e.g H2S) from coal. This kinetic scheme is implement into GASDS, a package that includes a gasifier mathematical model, which accurately describes the inter-phase mass and heat transfer. The first complexity relies in the characterization of the coal, in particular the relative amount of the different forms of sulfur components (e.g. inorganic such as pyritic and sulfates, and organic sulfur such as aliphatic, aromatic and thiophenic) and their pyrolysis and devolatilization process. The kinetic model, with the related rate parameters, is validated through comparison with experimental data from the literature and obtained during several experimental campaigns at the Sotacarbo S.p.A. pilot platform. Finally, different operating conditions of gasification are analyzed in order to obtain the best yield in the downstream process, with special reference to the novel Acid Gas to Syngas (AG2STM) process

    Aerosol-assisted CVD synthesis, characterisation and gas-sensing application of gold-functionalised tungsten oxide

    Get PDF
    Tungsten oxide nanoneedles (NNs) functionalised with gold nanoparticles (NPs) have been integrated with alumina gas-sensor platforms using a simple and effective co-deposition method via aerosol-assisted chemical vapour deposition (AACVD) utilising a novel gold precursor, (NH4)AuCl4. The gas-sensing results show that gold NP functionalisation of tungsten oxide NNs improves the sensitivity of response to ethanol, with sensitivity increasing and response time decreasing with increasing amount of gold

    Effect of the distillation time on the chemical composition, antioxidant potential and antimicrobial activity of essential oils from different cannabis sativa L. Cultivars

    Get PDF
    Within the unavoidable variability of various origins in the characteristics of essential oils, the aim of this study was to evaluate the effect of the distillation time on the chemical composition and biological activity of Cannabis sativa essential oils (EOs). The dry inflorescences came from Carmagnola, Kompolti, Futura 75, Gran Sasso Kush and Carmagnola Lemon varieties from Abruzzo region (Central Italy), the last two being new cultivar here described for the first time. EOs were collected at 2 h and 4 h of distillation; GC/MS technique was applied to characterize their volatile fraction. The EOs were evaluated for total polyphenol content (TPC), antioxidant capacity (AOC) and antimicrobial activity against food-borne pathogens and spoilage bacteria. The time of distillation particularly influenced EOs chemical composition, extracting more or less terpenic components, but generally enriching with minor sesquiterpenes and cannabidiol. A logical response in ratio of time was observed for antioxidant potential, being the essential oils at 4 h of distillation more active than those distilled for 2 h, and particularly Futura 75. Conversely, except for Futura 75, the effect of time on the antimicrobial activity was variable and requires further investigations; nevertheless, the inhibitory activity of all EOs against Pseudomonas fluorescens P34 was an interesting result

    Roadmap for stroke: Challenging the role of the neuronal extracellular matrix

    Get PDF
    Stroke is a major challenge in modern medicine and understanding the role of the neuronal extracellular matrix (NECM) in its pathophysiology is fundamental for promoting brain repair. Currently, stroke research is focused on the neurovascular unit (NVU). Impairment of the NVU leads to neuronal loss through post-ischemic and reperfusion injuries, as well as coagulatory and inflammatory processes. The ictal core is produced in a few minutes by the high metabolic demand of the central nervous system. Uncontrolled or prolonged inflammatory response is characterized by leukocyte infiltration of the injured site that is limited by astroglial reaction. The metabolic failure reshapes the NECM through matrix metalloproteinases (MMPs) and novel deposition of structural proteins continues within months of the acute event. These maladaptive reparative processes are responsible for the neurological clinical phenotype. In this review, we aim to provide a systems biology approach to stroke pathophysiology, relating the injury to the NVU with the pervasive metabolic failure, inflammatory response and modifications of the NECM. The available data will be used to build a protein–protein interaction (PPI) map starting with 38 proteins involved in stroke pathophysiology, taking into account the timeline of damage and the co-expression scores of their RNA patterns The application of the proposed network could lead to a more accurate design of translational experiments aiming at improving both the therapy and the rehabilitation processes
    corecore