In this study we compile for the first time comprehensive data sets of solar
and stellar flare parameters, including flare peak temperatures T_p, flare peak
volume emission measures EM_p, and flare durations t_f from both solar and
stellar data, as well as flare length scales L from solar data. Key results are
that both the solar and stellar data are consistent with a common scaling law
of EM_p ~ T_p^4.7, but the stellar flares exhibit ~250 times higher emission
measures (at the same flare peak temperature). For solar flares we observe also
systematic trends for the flare length scale L(T_p) ~ T_p^0.9 and the flare
duration t_F(T_p) ~ T_p^0.9 as a function of the flare peak temperature. Using
the theoretical RTV scaling law and the fractal volume scaling observed for
solar flares, i.e., V(L) ~ L^2.4, we predict a scaling law of EM_p ~ T_p^4.3,
which is consistent with observations, and a scaling law for electron densities
in flare loops, n_p ~ T_p^2/L ~ T_p^1.1. The RTV-predicted electron densities
were also found to be consistent with densities inferred from total emission
measures, n_p=(EM_p/q_V*V)^1/2, using volume filling factors of q_V=0.03-0.08
constrained by fractal dimensions measured in solar flares. Our results affect
also the determination of radiative and conductive cooling times, thermal
energies, and frequency distributions of solar and stellar flare energies.Comment: 9 Figs., (paper in press, The Astrophsycial Journal