1,304 research outputs found

    Collaborative Project Across Three Hong Kong Universities: A Case Study in E-Commerce Education

    Get PDF
    This paper reports on the work undertaken by three tertiary institutions in Hong Kong to provide business students with the opportunity to experience a project-based teamwork game in learning e-commerce (EC). The teaching objective of this EC project is to develop the knowledge and skills of students, such as in the use of EC site-building tools, critical thinking, communication skills, teamwork, and entrepreneurship. This study examined student attitudes toward the learning in introductory e-commerce course via a project-based teamwork game in EC using a non-traditional teaching approach. The results ofan evaluation indicate that the project-based teamwork approach performed to expectations. Based on the feedback from students from the three tertiary institutions, the project was found to facilitate the teaching and learning of EC and to be interesting, exciting, innovative, and more worthwhile than traditional textbook-based learning

    High Aspect Pattern Formation by Integration of Micro Inkjetting and Electroless Plating

    Get PDF
    This paper reports on formation of high aspect micro patterns on low temperature co-fired ceramic (LTCC) substrates by integrating micro inkjetting with electroless plating. Micro inkjetting was realized by using an inkjetting printer that ejects ink droplets from a printhead. This printhead consists of a glass nozzle with a diameter of 50 micrometers and a piezoelectric transducer that is coated on the nozzle. The silver colloidal solution was inkjetted on a sintered CT800 ceramic substrate, followed by curing at 200 degrees C for 60 minutes. As a result, the silver trace with a thickness of 200 nm was obtained. The substrate, with the ejected silver thin film as the seed layer, was then immersed into a preinitiator solution to coat a layer of palladium for enhancing the deposition of nickel. Electroless nickel plating was successfully conducted at a rate of 0.39 micrometers /min, and the thickness of traces was plated up to 84 micrometers. This study demonstrates that the integration of inkjetting with plating is an effective method to form high aspect patterns at the demand location.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838

    Tunneling Via Individual Electronic States in Ferromagnetic Nanoparticles

    Full text link
    We measure electron tunneling via discrete energy levels in ferromagnetic cobalt particles less than 4 nm in diameter, using non-magnetic electrodes. Due to magnetic anisotropy, the energy of each tunneling resonance shifts as an applied magnetic field rotates the particle's magnetic moment. We see both spin-increasing and decreasing tunneling transitions, but we do not observe the spin degeneracy at small magnetic fields seen previously in non-magnetic materials. The tunneling spectrum is denser than predicted for independent electrons, possibly due to spin-wave excitations.Comment: 4 pages, 4 figures. Improved by comments from referees, to appear in Phys. Rev. Let

    Semiclassical theory of electron drag in strong magnetic fields

    Full text link
    We present a semiclassical theory for electron drag between two parallel two-dimensional electron systems in a strong magnetic field, which provides a transparent picture of the most salient qualitative features of anomalous drag phenomena observed in recent experiments, especially the striking sign reversal of drag at mismatched densities. The sign of the drag is determined by the curvature of the effective dispersion relation obeyed by the drift motion of the electrons in a smooth disorder potential. Localization plays a role in explaining activated low temperature behavior, but is not crucial for anomalous drag per se.Comment: 10 page

    Interpreting summertime hourly variation of NO2 columns with implications for geostationary satellite applications

    Get PDF
    Accurate representation of the hourly variation in the NO2-column-to-surface relationship is essential for interpreting geostationary observations of NO2 columns. Previous research indicated inconsistencies in this hourly variation. This study employs the high-performance configuration of the GEOS-Chem model (GCHP) to analyze daytime hourly NO2 total columns and surface concentrations during summer. We use measurements from globally distributed Pandora sun photometers and aircraft observations over the United States. We correct Pandora total NO2 vertical columns for (1) hourly variations in effective temperature driven by vertically resolved contributions to the total column and (2) changes in local solar time along the Pandora line of sight. These corrections increase the total NO2 columns by 5–6 × 1014 molec. cm−2 at 09:00 and 18:00 across all sites. Fine-scale simulations from GHCP (∼12 km) reduce the normalized bias (NB) against Pandora total NO2 columns from 19 % to 10 % and against aircraft measurements from 25 % to 13 % in Maryland, Texas, and Colorado. Similar reductions are observed in NO2 columns over the eastern US (17 % to 9 %), the western US (22 % to 14 %), Europe (24 % to 15 %), and Asia (29 % to 21 %) when compared to 55 km simulations. Our analysis attributes the weaker hourly variability in the total NO2 column to (1) hourly variations in column effective temperature, (2) local solar time changes along the Pandora line of sight, and (3) differences in hourly NO2 variability from different atmospheric layers, with the lowest 500 m exhibiting greater variability, while the dominant residual column above 500 m exhibits weaker variability.</p

    Scanning-probe spectroscopy of semiconductor donor molecules

    Full text link
    Semiconductor devices continue to press into the nanoscale regime, and new applications have emerged for which the quantum properties of dopant atoms act as the functional part of the device, underscoring the necessity to probe the quantum structure of small numbers of dopant atoms in semiconductors[1-3]. Although dopant properties are well-understood with respect to bulk semiconductors, new questions arise in nanosystems. For example, the quantum energy levels of dopants will be affected by the proximity of nanometer-scale electrodes. Moreover, because shallow donors and acceptors are analogous to hydrogen atoms, experiments on small numbers of dopants have the potential to be a testing ground for fundamental questions of atomic and molecular physics, such as the maximum negative ionization of a molecule with a given number of positive ions[4,5]. Electron tunneling spectroscopy through isolated dopants has been observed in transport studies[6,7]. In addition, Geim and coworkers identified resonances due to two closely spaced donors, effectively forming donor molecules[8]. Here we present capacitance spectroscopy measurements of silicon donors in a gallium-arsenide heterostructure using a scanning probe technique[9,10]. In contrast to the work of Geim et al., our data show discernible peaks attributed to successive electrons entering the molecules. Hence this work represents the first addition spectrum measurement of dopant molecules. More generally, to the best of our knowledge, this study is the first example of single-electron capacitance spectroscopy performed directly with a scanning probe tip[9].Comment: In press, Nature Physics. Original manuscript posted here; 16 pages, 3 figures, 5 supplementary figure

    Zinc oxide nanoparticle-coated films: fabrication, characterization, and antibacterial properties

    Get PDF
    In this article, novel antibacterial PVC-based films coated with ZnO nanoparticles (NPs) were fabricated, characterized, and studied for their antibacterial properties. It was shown that the ZnO NPs were coated on the surface of the PVC films uniformly and that the coating process did not affect the size and shape of the NPs on the surface of PVC films. Films coated with concentrations of either 0.2 or 0.075 g/L of ZnO NPs exhibited antibacterial activity against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, but exhibited no antifungal activity against Aspergillus flavus and Penicillium citrinum. Smaller particles (100 nm) exhibited more potent antibacterial activity than larger particles (1000 nm). All ZnO-coated films maintained antibacterial activity after 30 days in water
    corecore