8,352 research outputs found
A New Multi-Resource cumulatives Constraint with Negative Heights
This paper presents a new cumulatives constraint which generalizes the original cumulative constraint in different ways. The two most important aspects consist in permitting multiple cumulative resources as well as negative heights for the resource consumption of the tasks. This allows modeling in an easy way new scheduling and planning problems. The introduction of negative heights has forced us to come up with new propagation algorithms and to revisit existing ones. The first propagation algorithm is derived from an idea called sweep which is extensively used in computational geometry; the second algorithm is based on a combination of sweep and constructive disjunction, while the last is a generalization of task intervals to this new context. A real-life timetabling problem originally motivated this constraint which was implemented within the SICStus finite domain solver and evaluated against different problem patterns
Modeling of Covalent Bonding in Solids by Inversion of Cohesive Energy Curves
We provide a systematic test of empirical theories of covalent bonding in
solids using an exact procedure to invert ab initio cohesive energy curves. By
considering multiple structures of the same material, it is possible for the
first time to test competing angular functions, expose inconsistencies in the
basic assumption of a cluster expansion, and extract general features of
covalent bonding. We test our methods on silicon, and provide the direct
evidence that the Tersoff-type bond order formalism correctly describes
coordination dependence. For bond-bending forces, we obtain skewed angular
functions that favor small angles, unlike existing models. As a
proof-of-principle demonstration, we derive a Si interatomic potential which
exhibits comparable accuracy to existing models.Comment: 4 pages revtex (twocolumn, psfig), 3 figures. Title and some wording
(but no content) changed since original submission on 24 April 199
Large-scale exact diagonalizations reveal low-momentum scales of nuclei
Ab initio methods aim to solve the nuclear many-body problem with controlled
approximations. Virtually exact numerical solutions for realistic interactions
can only be obtained for certain special cases such as few-nucleon systems.
Here we extend the reach of exact diagonalization methods to handle model
spaces with dimension exceeding on a single compute node. This allows
us to perform no-core shell model (NCSM) calculations for 6Li in model spaces
up to and to reveal the 4He+d halo structure of this
nucleus. Still, the use of a finite harmonic-oscillator basis implies
truncations in both infrared (IR) and ultraviolet (UV) length scales. These
truncations impose finite-size corrections on observables computed in this
basis. We perform IR extrapolations of energies and radii computed in the NCSM
and with the coupled-cluster method at several fixed UV cutoffs. It is shown
that this strategy enables information gain also from data that is not fully UV
converged. IR extrapolations improve the accuracy of relevant bound-state
observables for a range of UV cutoffs, thus making them profitable tools. We
relate the momentum scale that governs the exponential IR convergence to the
threshold energy for the first open decay channel. Using large-scale NCSM
calculations we numerically verify this small-momentum scale of finite nuclei.Comment: Minor revisions.Accepted for publication in Physical Review
Lithium and Lithium Depletion in Halo Stars on Extreme Orbits
We have determined Li abundances in 55 metal-poor (3.6 < [Fe/H] < -0.7) stars
with extreme orbital kinematics. We find the Li abundance in the Li-plateau
stars and examine its decrease in low-temperature, low-mass stars. The Li
observations are primarily from the Keck I telescope with HIRES (spectral
resolution of ~48,000 and median signal-to-noise per pixel of 140). Abundances
or upper limits were determined for Li for all the stars with typical errors of
0.06 dex. Our 14 stars on the Li plateau give A(Li) = log N(Li)/N(H) + 12.00 of
2.215 +-0.110, consistent with earlier results. We find a dependence of the Li
abundance on metallicity as measured by [Fe/H] and the Fe-peak elements [Cr/H]
and [Ni/H], with a slope of ~0.18. We also find dependences of A(Li) with the
alpha elements, Mg, Ca, and Ti. For the n-capture element, Ba, the relation
between A(Li) and [Ba/H] has a shallower slope of 0.13; over a range of 2.6 dex
in [Ba/H], the Li abundance spans only a factor of two. We examined the
possible trends of A(Li) with the characteristics of the orbits of our halo
stars, but find no relationship with kinematic or dynamic properties. The stars
cooler than the Li plateau are separated into three metallicity subsets. The
decrease in A(Li) sets in at hotter temperatures at high metallicities than at
low metallicities; this is in the opposite sense of the predictions for Li
depletion from standard and non-standard models.Comment: 29 pages including 3 tables and 12 figures Accepted by The
Astrophysical Journal, for the 1 November 2005 issue, v. 63
Symmetry-Breaking Motility
Locomotion of bacteria by actin polymerization, and in vitro motion of
spherical beads coated with a protein catalyzing polymerization, are examples
of active motility. Starting from a simple model of forces locally normal to
the surface of a bead, we construct a phenomenological equation for its motion.
The singularities at a continuous transition between moving and stationary
beads are shown to be related to the symmetries of its shape. Universal
features of the phase behavior are calculated analytically and confirmed by
simulations. Fluctuations in velocity are shown to be generically
non-Maxwellian and correlated to the shape of the bead.Comment: 4 pages, 2 figures, REVTeX; formatting of references correcte
Hydrogen Balmer Line Broadening in Solar and Stellar Flares
The broadening of the hydrogen lines during flares is thought to result from
increased charge (electron, proton) density in the flare chromosphere. However,
disagreements between theory and modeling prescriptions have precluded an
accurate diagnostic of the degree of ionization and compression resulting from
flare heating in the chromosphere. To resolve this issue, we have incorporated
the unified theory of electric pressure broadening of the hydrogen lines into
the non-LTE radiative transfer code RH. This broadening prescription produces a
much more realistic spectrum of the quiescent, A0 star Vega compared to the
analytic approximations used as a damping parameter in the Voigt profiles. We
test recent radiative-hydrodynamic (RHD) simulations of the atmospheric
response to high nonthermal electron beam fluxes with the new broadening
prescription and find that the Balmer lines are over-broadened at the densest
times in the simulations. Adding many simultaneously heated and cooling model
loops as a "multithread" model improves the agreement with the observations. We
revisit the three-component phenomenological flare model of the YZ CMi
Megaflare using recent and new RHD models. The evolution of the broadening,
line flux ratios, and continuum flux ratios are well-reproduced by a
multithread model with high-flux nonthermal electron beam heating, an extended
decay phase model, and a "hot spot" atmosphere heated by an ultrarelativistic
electron beam with reasonable filling factors: 0.1%, 1%, and 0.1% of the
visible stellar hemisphere, respectively. The new modeling motivates future
work to understand the origin of the extended gradual phase emission.Comment: 31 pages, 13 figures, 2 tables, accepted for publication in the
Astrophysical Journa
Structure and vibrational spectra of carbon clusters in SiC
The electronic, structural and vibrational properties of small carbon
interstitial and antisite clusters are investigated by ab initio methods in 3C
and 4H-SiC. The defects possess sizable dissociation energies and may be formed
via condensation of carbon interstitials, e.g. generated in the course of ion
implantation. All considered defect complexes possess localized vibrational
modes (LVM's) well above the SiC bulk phonon spectrum. In particular, the
compact antisite clusters exhibit high-frequency LVM's up to 250meV. The
isotope shifts resulting from a_{13}C enrichment are analyzed. In the light of
these results, the photoluminescence centers D_{II} and P-U are discussed. The
dicarbon antisite is identified as a plausible key ingredient of the
D_{II}-center, whereas the carbon split-interstitial is a likely origin of the
P-T centers. The comparison of the calculated and observed high-frequency modes
suggests that the U-center is also a carbon-antisite based defect.Comment: 15 pages, 6 figures, accepted by Phys. Rev.
Recommended from our members
Review: Consumption-stage food waste reduction interventions - What works and how to design better interventions
Food waste prevention has become an issue of international concern, with Sustainable Development Goal 12.3 aiming to halve per capita global food waste at the retail and consumer levels by 2030. However there is no review that has considered the effectiveness of interventions aimed at preventing food waste in the consumption stages of the food system. This significant gap, if filled, could help support those working to reduce food waste in the developed world, providing knowledge of what interventions are specifically effective at preventing food waste.
This paper fills this gap, identifying and summarizing food-waste prevention interventions at the consumption/consumer stage of the supply chain via a rapid review of global academic literature from 2006 to 2017.
We identify 17 applied interventions that claim to have achieved food waste reductions. Of these, 13 quantified food waste reductions. Interventions that changed the size or type of plates were shown to be effective (up to 57% food waste reduction) in hospitality environments. Changing nutritional guidelines in schools were reported to reduce vegetable waste by up to 28%, indicating that healthy diets can be part of food waste reduction strategies. Information campaigns were also shown to be effective with up to 28% food waste reduction in a small sample size intervention.
Cooking classes, fridge cameras, food sharing apps, advertising and information sharing were all reported as being effective but with little or no robust evidence provided. This is worrying as all these methods are now being proposed as approaches to reduce food waste and, except for a few studies, there is no reproducible quantified evidence to assure credibility or success. To strengthen current results, a greater number of longitudinal and larger sample size intervention studies are required. To inform future intervention studies, this paper proposes a standardised guideline, which consists of: (1) intervention design; (2) monitoring and measurement; (3) moderation and mediation; (4) reporting; (5) systemic effects.
Given the importance of food-waste reduction, the findings of this review highlight a significant evidence gap, meaning that it is difficult to make evidence-based decisions to prevent or reduce consumption-stage food waste in a cost-effective manner
- …
