1,401 research outputs found

    Pectinesterases from the orange fruit : their purification, general characteristics and juice cloud destabilizing properties

    Get PDF
    Twelve forms of pectinesterase were detected in citrus fruits. Two forms, representing over 90% of the total pectinesterase activity in Navel oranges, were purified. These pectinesterases, named Pectinesterase I and II have isoelectric points of 10.05 and>11.0, respectively. Both pectinesterases have the same molecular weight of 36 200 but differ in amino acid composition. A third pectinesterase, with a higher molecular weight (about 54 000) was partly purified. The optimum pH of these three pectinesterases is about 7.5, but their pH-activity profiles differ and depend on the degree of esterification of the pectin. The high molecular weight pectinesterase is still active at pH 2.5. The Km values of both purified pectinesterases decrease with decreasing degree of esterification of the pectin substrate and increase with decreasing pH. Pectinesterase II has a tenfold higher affinity for pectin than Pectinesterase I and is more strongly inhibited by pectate. The heat stabilities were determined: the D90 °C and Z values in orange juice are 0.00037 min and 6.5 °C for Pectinesterase 1, 0.0015 min and 11 °C for Pectinesterase II and 0.375 min and 6.5 °C for the high molecular weight pectinesterase. The orange juice cloud destabilizing properties of the pectinesterases at 5 °C and 30 °C are remarkably different. The activity measurements were done, amongst other methods, by an improved gas chromatographic methanol assay. The literature on pectinesterase was reviewed

    Function length as a tool for malware classification

    Full text link
    The proliferation of malware is a serious threat to computer and information systems throughout the world. Antimalware companies are continually challenged to identify and counter new malware as it is released into the wild. In attempts to speed up this identification and response, many researchers have examined ways to efficiently automate classification of malware as it appears in the environment. In this paper, we present a fast, simple and scalable method of classifying Trojans based only on the lengths of their functions. Our results indicate that function length may play a significant role in classifying malware, and, combined with other features, may result in a fast, inexpensive and scalable method of malware classification.<br /

    THEORETICAL VALIDATION OF TEST RESULTS FOR THE PRESSURE DROP VALUES OF CIRCULAR PINS WITH A MAXIMUM LENGTH TO DIAMETER RATIO OF 3.0 USING EXISTING EQUATIONS AND TEST DATA FOR HEAT EXCHANGER APPLICATION

    Get PDF
    Paper presented at the 8th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Mauritius, 11-13 July, 2011.Pins are a very common type of extended surface used in the field of heat transfer; their main use being in the electronics field. In this report, the use of pins as an extended surface is considered for a Heat Exchanger application in the aerospace field. The Heat Exchanger uses forced convective heat transfer mechanism for the dissipation of heat and the implicated fluid is air. For this application the pin layout and design is completely unique in that the pin’s maximum length to diameter ratio is 3.0 and the layout of the pins produces an X T value of 7, which has not been explored in any previous work. The Length: Diameter ratio of these new pins is very small when compared to the Length: Diameter ratios of tubes currently used in heat exchangers to enhance heat transfer. Moreover, the distance between the pins in this arrangement is much greater than those for the tubes. Testing has been performed on this pin design and the theoretical validation of those test results is one of the main aspects discussed in this report. Due to the innovative nature of the pin designs, there is insufficient existing test data or established equations that can be used. Assumptions are made in order to be able to apply the current equations for pressure drop calculations with valid justifications. The theoretical results for the total pressure drop show an average deviation of 6% from the test results for mass flow rates between 0.14 kg/s and 0.36 kg/s. The maximum pressure drop was found to be caused by the pins and it was in the range of 89%-91%of the total. In this article, the limitations of existing equations are discussed and the gap in the theoretical knowledge regarding novel pin designs is highlighted.mp201

    RAFT Polymerization of a Biorenewable/Sustainable Monomer via a Green Process

    Get PDF
    A biorenewable polymer is synthesized via a green process using the RAFT principle for the first time in supercritical CO2 at 300 bar and 80 °C. α-Methylene-Îł-butyrolactone polymers of various chain lengths and molecular weights are obtained. The molecular weights vary from 10 000 up to 20 000 with low polydispersity indexes (PDI <1.5). Furthermore, the monomer conversion in supercritical CO2 is substantially higher, respectively 85% for ScCO2 compared to ≈65% for polymerizations conducted in dimethyl formamide (DMF) solvent. Chain extensions are carried out to confirm the livingness of the formed polymers in ScCO2. This opens up future possibilities of the formation of different polymer architectures in ScCO2. The polymers synthesized in ScCO2 have glass transition temperature (Tg) values ranging from 155 up to 190 °C. However, the presence of residual monomer encapsulated inside the formed polymer matrix affects the glass transition of the polymer that is lowered by increasing monomer concentrations. Hence, additional research is required to eliminate the remaining monomer concentration in the polymer matrix in order to arrive at the optimal Tg

    Alice: The Rosetta Ultraviolet Imaging Spectrograph

    Full text link
    We describe the design, performance and scientific objectives of the NASA-funded ALICE instrument aboard the ESA Rosetta asteroid flyby/comet rendezvous mission. ALICE is a lightweight, low-power, and low-cost imaging spectrograph optimized for cometary far-ultraviolet (FUV) spectroscopy. It will be the first UV spectrograph to study a comet at close range. It is designed to obtain spatially-resolved spectra of Rosetta mission targets in the 700-2050 A spectral band with a spectral resolution between 8 A and 12 A for extended sources that fill its ~0.05 deg x 6.0 deg field-of-view. ALICE employs an off-axis telescope feeding a 0.15-m normal incidence Rowland circle spectrograph with a concave holographic reflection grating. The imaging microchannel plate detector utilizes dual solar-blind opaque photocathodes (KBr and CsI) and employs a 2 D delay-line readout array. The instrument is controlled by an internal microprocessor. During the prime Rosetta mission, ALICE will characterize comet 67P/Churyumov-Gerasimenko's coma, its nucleus, and the nucleus/coma coupling; during cruise to the comet, ALICE will make observations of the mission's two asteroid flyby targets and of Mars, its moons, and of Earth's moon. ALICE has already successfully completed the in-flight commissioning phase and is operating normally in flight. It has been characterized in flight with stellar flux calibrations, observations of the Moon during the first Earth fly-by, and observations of comet Linear T7 in 2004 and comet 9P/Tempel 1 during the 2005 Deep Impact comet-collision observing campaignComment: 11 pages, 7 figure

    Social inhibition and emotional distress in patients with coronary artery disease:The type D personality construct

    Get PDF
    We examined the validity of the social inhibition component of Type D, its distinctiveness from negative affectivity, and value regarding emotional distress as measured with the DS14 in 173 coronary artery disease patients. In dimensional analysis, social inhibition and negative affectivity emerged as distinct traits. Analysis of continuous negative affectivity and social inhibition measures showed main effects for several emotional and inhibition markers and an interaction effect for social anxiety. Categorical analysis indicated that Type D patients reported more depression, negative mood, social anxiety, and less positive mood. Social inhibition is not a redundant trait, but has additional conceptual valu

    POD‐identification reduced order model of linear transport equations for control purposes

    Get PDF
    Intrusive reduced order modeling techniques require access to the solver's discretization and solution algorithm, which are not available for most computational fluid dynamics codes. Therefore, a nonintrusive reduction method that identifies the system matrix of linear fluid dynamical problems with a least-squares technique is presented. The methodology is applied to the linear scalar transport convection-diffusion equation for a 2D square cavity problem with a heated lid. The (time-dependent) boundary conditions are enforced in the obtained reduced order model (ROM) with a penalty method. The results are compared and the accuracy of the ROMs is assessed against the full order solutions and it is shown that the ROM can be used for sensitivity analysis by controlling the nonhomogeneous Dirichlet boundary conditions

    A combined study of heat and mass transfer in an infant incubator with an overhead screen

    Get PDF
    The main objective of this study is to investigate the major physical processes taking place inside an infant incubator, before and after modifications have been made to its interior chamber. The modification involves the addition of an overhead screen to decrease radiation heat losses from the infant placed inside the incubator. The present study investigates the effect of these modifications on the convective heat flux from the infant’s body to the surrounding environment inside the incubator. A combined analysis of airflow and heat transfer due to conduction, convection, radiation and evaporation has been performed, in order to calculate the temperature and velocity fields inside the incubator before and after the design modification. Due to the geometrical complexity of the model, Computer-Aided Design (CAD) applications were used to generate a computer-based model. All numerical calculations have been performed using the commercial Computational Fluid Dynamics (CFD) package FLUENT, together with in-house routines used for managing purposes and User-Defined Functions (UDFs) which extend the basic solver capabilities. Numerical calculations have been performed for three different air inlet temperatures: 32, 34 and 36ÂșC. The study shows a decrease of the radiative and convective heat losses when the overhead screen is present. The results obtained were numerically verified as well as compared with results available in the literature from investigations of dry heat losses from infant manikins
    • 

    corecore