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Summary

Intrusive reduced order modeling techniques require access to the solver’s discretiza-
tion and solution algorithm, which are not available for most Computational Fluid
Dynamics codes. Therefore, a non-intrusive reduction method that identifies the
system matrix of linear fluid dynamical problems with a least-squares technique
is presented. The methodology is applied to the linear scalar transport convection
- diffusion equation for a 2D square cavity problem with a heated lid. The (time-
dependent) boundary conditions are enforced in the obtained reduced order model
(ROM) with a penalty method. The results are compared and the accuracy of the
reduced order models is assessed against the full order solutions and it is shown
that the reduced order model can be used for sensitivity analysis by controlling the
non-homogeneous Dirichlet boundary conditions.
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1 INTRODUCTION

Computational Fluid Dynamics (CFD) simulations are widely used in industry to solve fluid problems. However, running tran-
sient simulations using a full CFD approach is completely unfeasible for many engineering purposes due to the excessive amount
of computational power needed, especially when a large number of parameters are to be tested for control purposes, sensitivity
analyses or uncertainty quantification studies. Model reduction techniques have therefore been developed to approximate the
(parametrized) Partial Differential Equations (PDEs) describing the fluid problem, which reduces the CPU time and computer
memory usage1,2,3,4.
Reduced order modeling (ROM) techniques can be applied to the standard discretization techniques as Finite Difference

(FD), Finite Volume (FV) and spectral methods, but have been mostly developed for the Finite Element (FE) method. In indus-
try, however, the FV method is often used, by commercial software and open-source codes, for the spatial discretization of the
governing equations that describe the physical fluid model5,6, as the method is robust7 and preserves locally the conservation
laws8,9. A set of reduced basis functions, containing the essential dynamics of the full order system, is often created with the
Proper Orthogonal Decomposition (POD) method10. POD is commonly applied in fluid dynamics literature for this purpose, as
it can also be applied to nonlinear models3,4. These POD basis functions are obtained through solving an eigenvalue problem
on snapshots which are generated by sampling the full order model (FOM) at several moments in time. For unsteady problems,
POD is typically combined with the Galerkin projection where the full order system is projected onto the low-dimensional sub-
space of PODmodes and the difference with the snapshots is minimized3,10,11 to obtain a system of time-dependent coefficients,
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the reduced order model. However, the main issue of this reduced basis method is that knowledge of the solver’s discretization
and solution algorithm is required in order to perform the Galerkin projection and could therefore not be used for most (com-
mercial) software. Instead, non-intrusive ROMs (NIROM)15, are using for instance a sparse grid collocation approach12,14 or
interpolation12,13,14,16,17 to calculate the POD coefficients. On the other hand, data-driven techniques, such as System Identi-
fication (SI), are using the input/output data of a dynamical system to identify a low-dimensional system that approximately
describes the dynamics of a high-dimensional system18 with a set of low-order ordinary differential equations (ODEs). Exam-
ples are the Dynamic Mode Decomposition (DMD), first introduced by Schmid19 as a method for extracting coherent dynamic
flow structures from a set of snapshots and Krylov-subspace projection-based ROM methods as Vervecken et al.20 have shown
for the convection - diffusion equation21. A disadvantage of SI methods is that the obtained reduced system does not have a
physical meaning and consistency issues can occur for parameterized problems22. Therefore, a POD-based identification (POD-
ID) method is proposed here, for which reduced system matrices of the same form as in the POD-Galerkin method are identified
using a least-squares technique. A set of ODEs, still describing the physical model, is then obtained. The resulting ROM can
be used for controlling the (time-dependent) non-homogeneous Dirichlet boundary conditions (BCs) instead of having to per-
form a high fidelity simulation for every BC of interest. The BCs are enforced in the ROM with a penalty factor23. The paper is
organized as follows: In Section 2 the scalar transport equation is introduced for which the full order simulation is performed.
The methodology of the POD-based identification method is addressed for parametrized boundary conditions together with BC
enforcement method in Section 3. In Section 4 the ROM technique is tested for a numerical experiment and the results are
provided and discussed in Section 5 and 6, respectively. Finally conclusions are drawn in Section 7 and an outlook for further
improvements is provided.

2 THE CONVECTION - DIFFUSION SCALAR TRANSPORT EQUATION

In this work the unsteady convection-diffusion scalar transport equation in incompressible form is considered, given by
⎧

⎪

⎪

⎨

⎪

⎪

⎩

)T
)t
+ ∇ ⋅ (⟨u⟩ T ) − ∇2(DT ) = 0 in Ω,

T (x, t) = f (t) on Γlid ,
T (x, t) = 0 on Γ0,
T (x, 0) = T0 in Ω,

(1)

where ⟨u⟩ is a steady velocity field, T is the transported scalar, T0 is the initial scalar field and D is the diffusion coefficient
divided by the fluid density and the heat capacity, which are both constant. The boundary of the domain, Ω, is divided in two
parts: Γ = Γ0 ∪ Γlid , where u = g(x) on Γlid and u = (0,0) on Γ0. It is important that the given steady background velocity field,
⟨u⟩, satisfies the continuity equation ∇ ⋅ u = 0 for incompressible flows. This flow field can be obtained from a standard CFD
model and hence its calculation is not described further. Discretizing the transport equation in space and rearranging in matrix
form leads to the following system of equations

{

Ṫ + CT −DBT = 0,
T (0) = T 0,

(2)

where the dot indicates the time derivative, C and B are the convective and diffusive matrices, respectively. T0 is the initial
condition.

3 THE REDUCED ORDER MODEL

In this section the methodology of the proposed POD-based IDentification method, as a non-intrusive reduced-order method
(NIROM) for linear CFD problems, is described.

3.1 Generation of the POD-basis
The main assumption of the POD method is that the system’s dynamics are governed by a reduced number of dominant modes
and that there exists an approximation of the transported scalar, Tr(x, t), so that the full order solution, T (x, t), can be expressed
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as a linear combination of orthogonal spatial modes, �i(x), multiplied by time-dependent coefficients, ai(t), as follows

T (x, t) ≈ Tr(x, t) =
Nr
∑

i=1
�i(x)ai(t) (3)

whereNr is the dimension of the reduced basis space3,10,11. The spatial modes �i(x) are determined using a snapshot technique
where a snapshot matrix Y is generated, in this case by numerical simulations, containing a set of solutions of T , internal field
plus boundary points, at some selected times tn for n = 0,. . . ,Nt.

Y = [T (x, t0), T (x, t1),… , T (x, tNt)] ∈ ℝNx×(Nt+1) (4)

whereNx is the spatial dimension and T (x, t0) is the initial condition. The snapshots do not necessarily have to be collected at
every time step for which the full order solution is calculated. As the POD modes are orthogonal to each other,

⟨

�i,�j
⟩

L2(Ω)
=

�ij , the POD basis, EPOD, is optimal when the difference between the snapshots and the projection of the snapshots on the basis
functions is minimal for a certain norm. The L2-norm is preferred for discrete numerical schemes24 with ⟨⋅, ⋅⟩L2(Ω) the L

2 inner
product of the functions over the domain Ω. The minimization problem is given by

EPOD
Nr

= arg min 1
Nt + 1

Nt
∑

n=0

‖

‖

‖

‖

‖

‖

T (x, tn) −
Nr
∑

i=1
⟨T (x, tn), �i(x)⟩L2 �i(x)

‖

‖

‖

‖

‖

‖

2

L2

. (5)

One way to compute the POD modes is by applying the Singular Value Decomposition (SVD) to the snapshot matrix, Y =
UΣV T . However, the SVD approach is computationally more expensive than solving the eigenvalue problem, especially when
the dimension of the grid, used to discretize the domain, is increased. It is then recommended to solve an eigenvalue problem,
using the correlation matrix Ccorr ∈ ℝ(Nt+1)×(Nt+1) of the snapshots, to determine the basis functions. The eigenvalue problem
is given by

CcorrQ = Q� (6)
where Ccorri,j =

⟨

T (x, ti), T (x, tj)
⟩

L2(Ω)
is the correlation matrix, Q is a square matrix of eigenvectors and � is a vector

containing the eigenvalues. The POD modes, �i, can then be constructed as follows

�i(x) =
1

(Nt + 1)
√

�i

Nt
∑

n=0
T (x, tn)Qi,n for i = 1, ..., Nr. (7)

For a more detailed explanation of this method the reader is referred to25,26.

3.2 POD-based Identification
In case of the classical POD-Galerkin method, the scalar function, T , is replaced by the approximation, Tr, in equation (1) and
by applying the Galerkin projection onto the reduced basis, the following ROM is obtained

ȧ + Cra −DBra = 0 (8)

where
Bri,j =

⟨

∇�i,∇�j
⟩

L2(Ω)
(9)

Cri,j =
⟨

�i,∇ ⋅ (⟨u⟩�j)
⟩

L2(Ω)
(10)

The main issue of this method is, however, that knowledge of the solver’s discretization and solution algorithm is required in
order to perform the Galerkin projection. Furthermore the full order matrices,B and C , in equation (2) are not accessible within
most CFD codes, due to restricted access to the source code in commercial software or due to the used solution methodology for
open-source codes20. Therefore, it is also not an option to apply a Galerkin projection on the matrices of the full order systems
in the following way

Br = ΦTBΦ (11)

Cr = ΦTCΦ (12)
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where Φ = [�1, �2, ..., �Nr
]. Thence, the POD-based Identification method aims at identifying these reduced matrices using a

least-squares technique such as normal equations, QR-decomposition or SVD by minimizing the residual, R,

R = ȧ + Cra −DBra (13)
in the following way

[

B̂r Ĉr
]

= min
Br, Cr

‖R‖ . (14)

In equation 13, the time-dependent coefficients are constructed via a projection of modes on the full order solution

a(t) = ΦTT (x, t) (15)
In addition, when the dynamical system is linear, no sources or sinks are present and the variables, for instance the diffusion
coefficient D, are not a function of a parameter � ∈ parameter space  , the ROM can be simplified by the assumption that the
time-dependent coefficients are related via the linear mapping

Aran+1 = an for n = 0,… , Nt − 1 (16)
where Ar is an unknown matrix to be identified using a least-squares approach. In order to do that, two matrices, X0 and X1,
are constructed that contain the known time-dependent coefficients at certain times in the following way

X0 = [a0,a1, ...,aNt−1] (17)

X1 = [a1,a2, ...,aNt] (18)
to satisfy equation 16 as good as possible for each time step in which the snapshot is collected, by minimizing the difference
between ArX1 and X0 Therefore, the reduced matrix, Ar, is computed by minimizing the norm

Ar = argmin
Âr

‖

‖

‖

ÂrX1 −X0
‖

‖

‖

(19)

using a least-squares technique. A similar approach is applied for the Dynamic Mode Decomposition, where the snapshots are
assumed to be related via a linear mapping and the discrete-time linear system is then fitted on the set of snapshots27. The POD-
ID method differs in the sense that the mapping is done at the reduced level instead of the high-dimensional level at which the
snapshots are obtained. The maximum number of modes to be considered,Nr, is of the order

√

Nt as an overdetermined system
is required in order to identify a reduced matrix Ar of sizeNr xNr.
Finally, three types of scalar fields are considered: the full order field T (x, t), the projected field Tr(x, t) which is obtained by

the projection of the FOM snapshots onto the POD basis and the prediction field, T ROM (x, t). For every time instance, tn for n
= 0, . . . ,Nt, the basis projection error, ‖e‖l2 , is given by

‖e‖l2 =

√

⟨(T − Tr), (T − Tr)⟩l2
⟨T , T ⟩l2

(20)

and the prediction error, ‖ê‖l2 , by

‖ê‖l2 =

√

⟨(T − T ROM ), (T − T ROM )⟩l2
⟨T , T ⟩l2

. (21)

For both the l2-error norm is considered, where ⟨⋅, ⋅⟩l2(Ω) is the l
2 inner product of the fields over the domain Ω.

3.3 Boundary conditions
3.3.1 (Non-)homogeneous boundary conditions
In order to control the boundary conditions at the reduced order level, the POD-ID method has to be extended. First of all, the
boundary conditions need to be enforced in the ROM. However, an issue arises in the case of non-homogeneous Dirichlet BCs
as any linear combination of snapshots used for the creation of the POD basis will, in general, not satisfy the same BCs and the
same applies to the ROM. There is no problem in the case of homogeneous BCs as the linear combinations of snapshots with
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homogeneous boundary conditions will naturally satisfy the same BCs. To solve these issues, the boundary points are added
first to each snapshot before generating the POD basis functions, �(x). As these basis functions are solely depending on the
spatial coordinates and the arrangement can be chosen freely as long as it is consistent over the time steps, it is chosen to add the
non-homogeneous boundary conditions to the end of each vector containing the snapshot data for the corresponding boundary
points.

3.3.2 Parametrized boundary conditions
In order to impose control on the boundary conditions at the reduced order level, the POD-IDmethod has to be extended. First of
all, the boundary conditions need to be enforced in the ROM. However, an issue arises in the case of non-homogeneous Dirichlet
BCs as any linear combination of snapshots used for the creation of the POD basis will, in general, not satisfy the same BCs
and the same applies to the ROM. There is no problem in the case of homogeneous BCs as the linear combinations of snapshots
with homogeneous boundary conditions will naturally satisfy the same BCs. Another way to deal with non-homogeneous BCs
is to add an additional constraint to the transport equation in order to weakly enforce the boundary condition for the ROM with
a penalty factor3,23,25,28,29. No modification of the snapshots is needed other than adding the boundary points in case these are
not present, otherwise the ROM could become unstable. The constraint is added to the transport equation in the following way

)T
)t
+ ∇ ⋅ (⟨u⟩ T ) − ∇2(DT ) + �Γ(T − Tbc(t)) = 0 (22)

where Tbc(t) is the (time-dependent) Dirichlet boundary condition, � the penalty factor and Γ is a null function except on the
boundary where the condition is imposed25. In order to have an asymptotically stable solution, the penalty factor � should be
larger than 0. In case � → ∞ a strong imposition would be approached and the ROM becomes ill-conditioned. This penalty
factor can be found by numerical experimentation23,25,30.
At reduced order level, after a Galerkin projection, this translates to

ȧ + Cra −DBra + �(Ea − �(t)) = 0 (23)

where � is the projection of the boundary values on the modes at the boundary and E the modes projected on the reduced basis
at the boundary domain, )Ω, given respectively, by

�i(t) = ⟨�i(x), TBC (x, t)⟩l2,)Ω (24)

Eij =
⟨

�i(x), �j(x)
⟩

l2,)Ω
(25)

For the POD-ID method, without the parametrization of the diffusion coefficient, the reduced system is given by
(

Ar + �E
)

an+1 = an + ��(tn) (26)

that can be solved for an+1, depending on the boundary, Tbc(t), applied. The initial condition for the ROM is obtained by
projecting the full order initial condition for the parametrized BC, Tbc(t0), onto the POD basis as follows

a0 = ΦTT (t0) (27)
The overall algorithm for the POD-ID method including the penalty method is given below.
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Algorithm: POD-ID method including penalty method

Create ROM with POD-ID method:
(1) Generate snapshots over a time period [0, tNt] by solving the linear full order problem of Eq. 1;
(2) Retrieve the snapshots matrix Y from the solutions obtained as in Eq 4;
(3) Perform POD on Y to obtain the POD modes Φ using Eq. 7;
(4) Project the snapshots on the modes to obtain the corresponding coefficients a(t) using Eq. 15;
(5) Retrieve the matrices X0 and X1 from the coefficients with Eq. 17 and 18;
(6) Identify the reduced matrix Ar by minimizing the norm ‖

‖

‖

ÂrX0 −X1
‖

‖

‖

with a least-squares technique as in
Eq. 19;

(7) Project the initial field for the parametrized BC onto the POD basis to get the initial condition a0 for the ROM
using Eq. 27;

Impose BCs with penalty method:
(8) Project the values for the parametrized non-homogeneous Dirichlet boundary on the modes to determine �(t)

using Eq. 24;
(9) Project the modes on the reduced basis at the same boundary domain of previous step to determine E using

Eq. 25;
(10) Set a value for the penalty factor �;
Solve reduced order model:
(11) Solve the reduced order problem of Eq. 26 for the time period [0, tNt];
(12) if The boundary is not enforced in ROM solution then

go back to step (10).
end if

(13) Reconstruct the full order fields from the obtained coefficients using Eq. 3;
(14) Calculate the prediction error using Eq. 21.

4 NUMERICAL EXPERIMENTS

The POD-ID method is tested for the classical numerical 2D lid-driven cavity benchmark problem31,32 that consists of a 2D
square cavity of length L = 1 m on which a (512 x 512) uniform mesh is constructed. The geometry is depicted in Figure 1. The
boundary of the domain is divided in two parts: Γ = Γ0 ∪ Γlid , where u = (1,0) on Γlid and u = (0,0) on Γ0. A homogeneous
Neumann boundary condition for the pressure is applied everywhere on Γ. The steady background velocity field is precomputed
first in the offline phase for laminar flow with Re = 1000. The viscosity, �, is taken at 1 ⋅ 10−4 m2/s. The initial conditions are
set to u(x,0) = 0 m/s and p(x,0) = 0 Pa for the velocity and pressure, respectively. The reference value for the pressure is set to
0 Pa at coordinate (0,0). The calculation of the flow field is performed in the OpenFOAM environment21, a finite volume open-
source code8,33,34, with the icoFoam solver for t = 50 s with time steps of 0.01s. The final time, t = 50 s, is taken as the steady
velocity field. In fact, any steady flow field could be chosen.
The temperature is calculated everywhere in the heated lid-driven cavity35 by solving the scalar transport equation (1) with

D equal to 1 ⋅ 10−5 m2/s for the thermal diffusion constant and the flow field previously obtained. Furthermore, a homogeneous
Dirichlet BC is applied on Γ0 and a non-homogeneous BC with T FOMlid = 1 on Γlid . The initial condition is set to T (x,0) = 0.
All temperatures are made non-dimensional by a reference temperature Tref . The simulation is performed with the scalarTrans-
portFoam solver of OpenFOAM with an implicit scheme for the time discretization. A constant time step of Δt = 1 ⋅ 10−3 s has
been applied. Snapshots of the temperature are collected every 0.1 s, resulting in a total of 1000 snapshots. The POD modes and
ROM are constructed according to Section 3.1 and 3.2, respectively. The time-independent BC for the ROM, T ROMlid , could be
chosen freely, although it should be of the same order as T FOMlid for which the POD has been performed to avoid discrepancies,
as the statement "If it is not in the snapshots, it is not in the ROM" by Quarteroni et al.3 still applies. The BCs are enforced with
the penalty method according to Section 3.3.2 and the ROM is tested for T ROMlid = 0.5, 2 and 10. As the system is linear, param-
eterizing the time-independent Dirichlet BC on Γlid is straightforward as the FOM solutions can be scaled according to a BC of
interest and no ROM has to be constructed. Nevertheless, the ROMs are constructed in order to demonstrate the capability of
the POD-ID method.
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FIGURE 1 A sketch of the geometry of the heated lid-driven cavity problem including boundary conditions.

Finally, the ROM is tested for a time-dependent boundary condition given by

T (x, 1, t) = Asin(2�ft) + T0 (28)

where f is the frequency of the wave, A the amplitude and T0 the off-set. Full order solutions, with this time-dependent BC, are
calculated for f = 0.01 s−1, A = 1 and T0 = 1, which will be referred to as the base case (set 1 in Table 1). The ROM is tested
for five sets of parameters that are defining the Dirichlet BC, summarized as set 2-5 in Table 1. To evaluate the accuracy of the
POD-ID method for all ROMs, the l2-error norm is considered according to equation (21).

TABLE 1 Parameter sets for time-dependent Dirichlet BCs defined by equation (28)

f A T0
Set 1 0.01 1 1
Set 2 0.01 2 1
Set 3 0.01 1 3
Set 4 0.01 2 3
Set 5 0.011 1 1
Set 6 0.02 1 1

In the offline phase, the snapshots are created with OpenFOAM, while in the second part of the offline phase, creating the POD
modes and constructing the reduced system of equations (8), is performed with MATLAB36. Also the online phase, solving the
reduced order systems for different Dirichlet boundary conditions is done with MATLAB. The whole offline-online procedure is
carried out with a single processor on an Intel core i5. The ROM’s online computational time depends on the number of modes
and is no longer dependent on the number of degrees of freedom of the FOM.

5 RESULTS

In this section the accuracy of the ROM is tested for both time-independent and time-dependent Dirichlet BC. Before these tests,
the background velocity is precomputed. The flow field is shown together with the corresponding pressure field in Figure 2.
Then, the full order simulation for the time-independent Dirichlet BC T FOMlid = 1 is performed until t = 100 s. The evolution of
the temperature field in time is shown in Figure 3 for t = 1, 10, 50 and 100 s.
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During the offline phase the reduced basis for the temperature was calculated following the procedure described in Section 3.
The decay of the normalized POD eigenvalues is plotted in Figure 4 in order to determine the number of basis functions needed
to create the reduced subspace. The figure shows that 18 basis functions are required to have a truncation error less than 10−6.
The cumulative eigenvalues (CV) can be found in Table 2 and 36 modes are sufficient to retain more than 99.9% of the energy
for temperature. However, as pointed out in Section 3.2, the maximum number of modes to be considered is of the order

√

Nt,
which is 31 modes for a snapshot matrix containing 1000 snapshots. 31 modes correspond to a truncation error less than 10−7
and more than 99.8% of the energy for temperature is retained, so this number is used for the reduced basis.

FIGURE 2 (Left) the background velocity field in m/s and (right) the corresponding pressure field in Pa for the lid-driven
cavity simulation at t = 50 s.

One reduced matrix, containing all linear terms, is determined as last in the offline phase with the least-squares technique
(QR-decomposition) in order to describe the reduced system. The ROM is in the same form as equation (8). In the online phase
the ROM is solved for the same initial and boundary conditions as for the FOM and a numerical experimentation is performed
on the penalty method on a couple of values for �, namely 1, 10, 100, 1000 and 10.000. It is found that a penalty factor of 100
enforces the BCs without afflicting the ROM with ill-conditioning problems. Also a factor of 1000 and 10.000 did not lead to
unstable solutions. Therefore a penalty factor � = 1000 is chosen for all ROM simulations. The accuracy of the ROM is checked
by calculating the l2-error of the temperature field with equation (21) and comparing it with the projection error according to
equation (20), here referred to as the basis projection. Both are plotted in Figure 5 on the right. The ROM is describing the
system as accurate as projecting the first 31 modes. For the full order simulation a computational time of 165 minutes is required
to collect 1000 snapshots. Generating the POD modes and determining the reduced matrix, Ar, by solving the least-squares
problem in the offline step requires about 6 s and 0.6 s, respectively.

FIGURE 3 Evolution of the temperature with T FOMlid = 1 (base case) inside the cavity for time instances t = 1, 10, 50 and 100 s.
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FIGURE 4 Normalized POD eigenvalues of the base case with time-independent BC.

TABLE 2 Cumulative eigenvalues (CV) of the base case for temperature

# of modes CV of T
1 0.71253
2 0.82443
3 0.87342
4 0.90353
5 0.92473
10 0.97132
20 0.99333
31 0.99806
36 0.99901

5.1 Imposing time-independent BCs
The constructed ROM is tested for T ROMlid = 0.5, 1, 2 and 10. The ROM simulations are performed until t = 100 s for a constant
time step of 0.1 s. Full order simulations have been performed for comparison. A cross-section of the temperature field for x =
0.5 m at t = 100 s is plotted in Figure 5 on the left. The accuracy of the ROM is analyzed by calculating the prediction l2-error
of the temperature field and comparing it with the basis projection error of the FOM snapshots onto the POD basis in Figure 5
on the right. The ROM is describing the system with the same accuracy for any of the tested BCs.

5.2 Imposing time-dependent BCs
In order to construct a ROM for time-dependent BCs, snapshots have to be computed for a FOM with a similar BC as for which
the ROM has to be constructed. The time-dependent Dirichlet BC of the FOM is therefore given by equation (28) with amplitude
A = 1, frequency f = 0.01 Hz and offset T0 = 1. The time-dependent BC is enforced in the ROM with the penalty method
according to the methodology described in Section 3. Snapshots are collected every 0.1s for the temperature, resulting in a
total number of 1000 snapshots. As done previously, 31 modes are used for the ROM construction. No other parametrization is
considered and thus only one reduced matrix, containing all linear terms, is determined with the QR-decomposition technique.
ROM simulations are carried out for the parameter set 2, 3 and 4 (listed in Table 1). For each of the BCs a full order simulation
is performed to compare the ROM solution. Figure 10 shows the comparison of the temperature fields for t = 100 s for the FOM,
the corresponding ROM and the relative error between the two. Cross-sections of the temperature field at x = 0.5 m and at y =
0.5 m for t = 80 s are plotted in Figure 6 on the left and on the right, respectively.
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FIGURE 5 (Left) cross-section of the temperature field for x = 0.5 m at t = 100 s. T FOMlid = 1 is the base case and the ROM is
tested for T ROMlid = 0.5, 1, 2 and 10 with the penalty method. (Right) the corresponding l2-error analysis over time.
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FIGURE 6 Cross-section of the temperature field at x = 0.5 m (left) and y = 0.5 m (right) at t = 80 s. The time-dependent BCs
are listed in the legend with f = 0.01 Hz. The BCs are enforced in the ROM with a penalty method.

These figures show that the full order solution cannot simply be scaled as done previously for the time-independent BCs.
Nevertheless, the ROMs are capable of approximating the FOM solutions. For each ROM the prediction l2-error is compared
with the l2-error of the temperature reconstruction from the time-dependent coefficient given by projection of the snapshots
onto the POD functions in Figure 7. The l2-errors for the ROMs are of the same order as the basis projection and decrease, on
average, up to about 80 s, meaning that the reduced model is stable in that time interval. The prediction errors slightly increase
near the end of the ROM simulation, following the trend of the basis projection error. The error can be reduced by adding more
modes to the basis. However, as the POD-ID method requires the system to be overdetermined, the maximum number of modes
that can be used for identifying the ROM is set by the square root of the number of snapshots, meaning that 31 modes is near
the limit when only 1000 snapshots are used for the POD, instead of only one set as in this work. In order to add more modes to
the POD basis, one needs to increase the number of snapshots. Each ROM simulation required a computational time of about 2
s. The speed-up is thus of the order 103 compared with simulation the FOM.



Star ET AL 11

0 20 40 60 80 100

Time (s)

10
-5

10
-4

10
-3

10
-2

10
-1

FIGURE 7 l2-error analysis plotted over time for the FOM and ROMs with f = 0.01 Hz using 1000 snapshots for the POD
basis creation.

Finally, the frequency of the time-dependent BC is parametrized and ROM simulations are carried out for the parameter set
5 and 6 (listed in Table 1) using the same basis (set 1 in Table 1) as for previous cases. Cross-sections of the temperature field
at x = 0.5 m and y = 0.5 m are plotted in Figure 8 on the left and right, respectively. The corresponding l2-errors are plotted
in Figure 9. In case the frequency is increased by 10%, the l2-error is still of the same order of the basis projection. However,
doubling the frequency results in an increase of the l2-error by one order after about 10 s of simulation time.
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FIGURE 8 Cross-section of the temperature field at x = 0.5 m (left) and y = 0.5 m (right) at t = 80 s with time-dependent BCs
listed in the legend with f = 0.01 Hz.
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FIGURE 9 The l2-error plotted over time for the FOM and ROMs. The time-dependent BCs are listed in the legend with f =
0.01 Hz.

6 DISCUSSION

The ROMs constructed with the presented POD-ID method for controlling the non-homogeneous time-independent Dirichlet
BC are capable of approximating the full order solutions for the linear unsteady convection-diffusion equation as the relative
error of the main variable, namely the temperature, is of the same order as the projection error of the snapshots onto the POD
basis. In this study the penalty factor of 1000 was determined via numerical experimentation. The main advantage of the penalty
method is that is can be applied non-intrusively. However, that the factor cannot be determined a priori is a drawback of the
method23. Also, although it has not been observed here, it is possible that a penalty factor needs to be chosen above a certain
threshold to enforce the BC in the ROM, which then will lead to an unstable ROM solution29.The range of the factor for which
the solution is stable can for instance be determined using Poincaré maps29. Also the bounds on the factor that ensure asymptotic
stability of the ROM can be derived28. The prediction error increases when the frequency of the time-dependent BC is doubled.
There are two ways to increase the number of snapshots in order to reduce the error and to enhance stability. First of all, more full
order sets can be used for the POD. For example, adding full order snapshots for f = 0.03 Hz to the snapshot matrix in order to
parametrize the frequency in the interval [0.01, 0.03] Hz in the ROM. This can be combined with the second method to increase
the snapshot matrix, namely by sampling the full order solution more frequently. Then, more modes can be used to identify the
reduced matrix with the least-squares technique as, in order to keep the system overdetermined, the size of the reduced matrix is
limited by the square root of the number of snapshots. Even more snapshots would be required in the case of non-linear systems,
because then at least as many reduced matrices are to be identified as there are modes to be stored in the offline phase24,25,26.
For example, the non-linear convective term of the Navier-Stokes equations can be approximated by aTCra, where Cr is a
third order tensor. Then, the reduced problem grows with the cube of the number of modes in order to maintain an offline-
online decomposition. Consequently, more snapshots are required to keep the system overdetermined in order to identify all
these matrices. In that case, the required number of snapshots scales with the cube of the number of modes required. Otherwise,
many matrices will be empty in case the system is not overdetermined and the problem becomes ill-conditioned. Therefore, it
is not fully feasible to use the POD-ID method for fully non-linear problems. In theory, one can solve the ROM for a different
time step, dt, than used in the FOM, simply rewriting the problem of equation 16 in the following way: an+1(1 +Ardt)−1 = an.
However, the ROM becomes unstable when approximating the solution for time instances at which no snapshots are collected
for the POD, because the POD-ID method identifies a reduced matrix with the least-squares technique that fits the full order
snapshot data, like a black-box system, and is not capable of approximating the solution at intermediate time instances. Besides,
it is redundant to construct a ROM in order to impose the time-independent BC of the linear problem investigated in this paper.
One can simply obtain the results for the parametrized BCs at the same time instances for which snapshots were collected, as
parameterizing the Dirichlet BC condition only changes the solution with respect to a reference point. This does, however, not
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apply to the control of time-dependent BCs as then the solutions do not scale linearly with respect to a reference point. Then,
when intermediate results are required, interpolation techniques could be used to approximate the solution at intermediate times.
The same applies also for the long time stability of the ROM.
Finally, this parameterizing the BCs could be done for any given background velocity field, including those of turbulent flows.

As long as there is no two-way coupling between the fluid flow and the heat transfer, the problem stays linear and could be
described by a single reduced matrix. Finally, the speed-up is of the order of 103. Less modes could be used to speed up the
calculation even more, but the error will then increase and the ROM could become unstable.

FIGURE 10 Comparison of the temperature field for the FOM (left) and ROM solutions (middle) at t = 100 s for parameter
set 1 - 4 (from top to bottom). The absolute difference between the ROM and corresponding FOM is plotted on the right. All

ROMs are obtained with 31 modes.
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7 CONCLUSIONS AND PERSPECTIVES

In this paper it has been demonstrated that the proposed POD-based Identification method is capable of constructing a ROM
that could be used for controlling the non-homogeneous time-(in)dependent Dirichlet BCs of the scalar transport convection
- diffusion equations by enforcing the BCs in the ROM with a penalty method rather than having to perform a high fidelity
simulation with the Finite Volume approximation for every BC of interest. However, the ROM could only approximate the
solution at the same time instances the snapshots are collected for determining the POD basis. Nevertheless, the POD-IDmethod
together with the penalty method could be applied for linear problem that require boundary control. For instance, determining
the heat transport by airflow in a room for transient thermal analysis for buildings where the temperature at a wall is the parameter
of interest or for pollution dispersion modeling where the concentration is controlled. However, the main shortcoming of the
POD-ID method, at this stage, is that it is not feasible to use the method for fully non-linear problems as the required number of
snapshots scales with the cube of the number of modes and at least as many reduced matrices are to be identified as the number
of modes used. Therefore, further research on non-linear problems is required. Furthermore, in case of a larger parameter space
to be investigated, one has to perform the POD on snapshots collected for more parameter values and/or one has to sample more
frequently in order to capture the full dynamics of the system. Instead of sampling the full order solution with a higher constant
frequency in order to extend the snapshot matrix, the sampling method could be optimized for example with a greedy method3.
Finally, other types of parametrization could be applied, for instance, parameterizing the diffusion coefficient. However in that
case, not just one, but two reduced matrices have to be identified, one for the diffusive and one for the convective term.
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