107 research outputs found

    Influence of Photoperiod on Biomass Production and Removal of Nutrients from Tannery Effluents with Microalgae Consortium

    Get PDF
    Content: Wastewater from tanneries besides having toxic compounds also contain nutrients such as carbon, phosphorus, and nitrogen, which facilitate the rapid multiplication of microalgae. Currently, many types of researches search microalgae capable of growing in industrial effluents, exploiting the advantages of removing the nutrients present in these waters and producing biomass with high value- added. The liquid effluents produced in tanneries for finished leather have essential nutrients for the growth of microalgae, but also some compounds that may restrict or hinder the growth of microalgae in this medium. Therefore, the present work has the objective to evaluate the growth of a microalgae consortium (collected in a wastewater treatment plant of a beamhouse tannery) for the removal of phosphorus and ammonia from wastewater streams of a tannery (processing wet-blue to finished leather) with different photoperiods. Microalgae consortium was cultivated at two different compositions of mixtures of raw wastewater (R) and wastewater after secondary biological treatment (B): 50% of R + 50% of B, (50R50B) and 75% of R + 25% of B, (75R25B), in photoperiod of 24 hours and 12 hours of light, temperature of 25 °C and constant aeration. The growth of microalgae in the effluent and the removal of phosphorus and ammonia were monitored throughout the cultivation. The microalgae consortium presented maximum biomass concentrations in the 75R25B effluent (1.40 g L-1) and phosphorus removal (97.64% for the 50R50B and 95.54% for the 75R25B) effluent and ammonia removal (100%) for both effluent with 24-hour photoperiod light. Take-Away: In this study, it was found that the microalgae consortium can survive in wastewater from tanneries (processing wet-blue to finished leather) and exhibit removals of phosphorus and ammonia from the medium. The 24-hour light photoperiod presented better microalgae growth and nutrient removal results

    Disentangling the effects of environmental conditions on wintering and breeding grounds on age-specific survival rates in a trans-Saharan migratory raptor

    Get PDF
    International audienceMigratory species are subject to environmental variability occurring on breeding and wintering grounds. Estimating the relative contribution of environmental factors experienced sequentially during breeding and wintering, and their potential interaction, to the variation of survival is crucial to predict population viability of migratory species. Here we investigated this issue for the Montagu's harrier Circus pygargus, a trans‐Saharan migrant. We analysed capture‐recapture data from a 29‐yr long monitoring of wing‐tagged offspring and adults at two study sites in France (Rochefort‐RO & Maine‐et‐Loire‐ML). The study period covers a climatic shift occurring in the Sahel with increasing rainfall following a period of droughts (Sahel greening). We found that harriers’ adult survival in RO (between 1988 and 2005) varied over time and was sensitive to the interaction between the amount of rainfall in the Sahel and the annual mean breeding success, two proxies of prey availability. The occurrence of adverse conditions on breeding and wintering grounds in the same year decreased survival from 0.70‐0.77 to 0.48 ± 0.05. Juvenile survival in RO was slightly more sensitive to conditions in Europe than in the Sahel. Unexpectedly, lower survival rates were found in years with higher mean breeding success, suggesting compensatory density feedbacks may operate. By contrast, adult survival in ML, monitored between 1999 and 2017, was higher compared to RO (0.76 ± 0.03 vs. 0.66 ± 0.02), remained constant and unaffected by any proxy of prey availability. This difference seems consistent with the fact that harriers in ML experienced better and especially less variable environmental conditions during breeding and wintering seasons compared to RO. Overall, we showed that survival of a migratory bird is sensitive to the level of variability in environmental conditions and that adverse conditions on wintering grounds can amplify the negative effects of conditions during the previous breeding season on birds’ survival

    Impact of anthropogenic disturbance on the chemistry of a small urban pond

    Get PDF
    Mirror Lake, one of the scenic locations on The Ohio State University\u27s campus, experiences an intense bioturbation event as part of an annual tradition revolving around the rivalry football game against the University of Michigan. This tradition involves thousands of students jumping into the lake over one night in the week leading up to the football game. Water samples were collected from several locations in the lake before, during, and after the Mirror Lake Jump to determine the impact of this event on lake water chemistry. There were significant and systematic increases in the concentrations of Na+, K+, Cl−, total nitrogen, ammonia, and dissolved organic carbon (DOC) associated with the jump, especially in the eastern side of the lake where most of the students entered. Over the 3-h period from 10 p.m. to 1 a.m. on the eastern side of the lake, Na+, K+, and Cl− concentrations increased by about 2–4 ppm, 1.5–3 ppm, and 4–6 ppm, respectively. The total nitrogen concentration increased about five to six fold, from 450–500 ppb to 2300–2800 ppb over the height of the event on the eastern side of the lake. Similar increases were observed for DOC, increasing from 3.6 to 18 ppm. This DOC increase was coincident with a 5‰ shift in ή13C, from a mean of around −28‰ in the early hours of the evening to a maximum of −23‰, implying a large influx of isotopically heavy carbon into the lake. Ammonia concentrations varied substantially from year to year, but always showed a systematic increase in concentration during the event. Smaller changes in major ion and nutrient concentrations were observed in the middle and western side of the lake, where fewer students entered the lake. The changes in concentration and the timing and spatial distribution of these changes are primarily attributed to anthropogenic input from jumpers in the form of bodily fluids (e.g., evaporated sweat, sebum and urine). Over a single night, these anthropogenic event inputs represent roughly 10% of the annual nitrogen budget of the lake, emphasizing the direct impact humans can have on urban water bodies on short time scales

    Laboratory apparatus to evaluate microalgae production

    Get PDF
    The application of microalgae for energy purposes and CO2 biomitigation continues to present a number of challenges, including the optimization of culture conditions. The application of experimental designs for microalgae cultivation is difficult, since experiments involving such microorganisms generally last days or weeks. This work proposes a multipurpose laboratory apparatus for the optimization of microalgae experimental conditions that simultaneously enables the evaluation of variables such as temperature, irradiance, photoperiod and CO2 concentration in the aeration stream, as well as variables related to the concentration of culture media nutrients. A case study is also presented in which temperature, concentration of f/2 medium sodium nitrate and the effects of incident light intensity on Nannochloropsis oculata lipid content are evaluated. Experiments were carried out following central composite designs, in batch cultivation within an airlift photobioreactor apparatus. The best experimental result was obtained at 21 ÂșC, 119 mg/L NaNO3 and 137 ”E.m-2.s-1, corresponding to 41.8% lipids and 211.9 mg.L-1 final lipid concentrations

    Extreme events are more likely to affect the breeding success of lesser kestrels than average climate change

    Get PDF
    Climate change is predicted to severely impact interactions between prey, predators and habitats. In Southern Europe, within the Mediterranean climate, herbaceous vegetation achieves its maximum growth in middle spring followed by a three-month dry summer, limiting prey availability for insectivorous birds. Lesser kestrels (Falco naumanni) breed in a time-window that matches the nestling-rearing period with the peak abundance of grasshoppers and forecasted climate change may impact reproductive success through changes in prey availability and abundance. We used Normalised Difference Vegetation Index (NDVI) as a surrogate of habitat quality and prey availability to investigate the impacts of forecasted climate change and extreme climatic events on lesser kestrel breeding performance. First, using 14 years of data from 15 colonies in Southwestern Iberia, we linked fledging success and climatic variables with NDVI, and secondly, based on these relationships and according to climatic scenarios for 2050 and 2070, forecasted NDVI and fledging success. Finally, we evaluated how fledging success was influenced by drought events since 2004. Despite predicting a decrease in vegetation greenness in lesser kestrel foraging areas during spring, we found no impacts of predicted gradual rise in temperature and decline in precipitation on their fledging success. Notwithstanding, we found a decrease of 12% in offspring survival associated with drought events, suggesting that a higher frequency of droughts might, in the future, jeopardize the recent recovery of the European population. Here, we show that extreme events, such as droughts, can have more significant impacts on species than gradual climatic changes, especially in regions like the Mediterranean Basin, a biodiversity and climate change hotspotinfo:eu-repo/semantics/publishedVersio

    Considerations on Demography and Conservation of Montagu's Harrier Circus pygargus in east Groningen, Netherlands

    No full text
    We studied correlations between reproductive parameters and environmental factors in Montagu's Harrier, breeding in agricultural habitat in east Groningen, Netherlands. Knowledge on such factors is of importance for conservation of the marginal population there. Common Voles (Microtus arvalis) made up between one third (considering estimated biomass) and half (considering prey number) of the diet. Diet was diverse, indicating generalist behaviour in 2003. During the study period (1992-2003), 1992 was the only good vole year. Voles were most numerous on fallow land and in high vegetation. Montagu's Harrier in east Groningen exhibited no numerical response to vole abundance during the study period. There was a trend of earlier laying in relatively good vole years, but other breeding parameters did not correlate with vole abundance. This and the generalist behaviour indicate that Montagu's Harrier was not single prey dependent in poor vole years. Breeding variables did not correlate with weather parameters. Vole abundance on the other hand correlated with maximal temperature and sunshine duration (average April-August). In protected nests, clutch sizes were larger and egg-fledgling survival better, but not significantly. We conclude that nest protection is still crucial but not effective on the long run. Habitat management aiming at better food supply, e.g. more extensive agriculture, setaside edges with high vegetation and mowing management, is more likely to increase breeding pair numbers. Identifying and protecting most productive areas in the population supposedly covering the Netherlands, Germany and Denmark, could favour a sustainable sub-population in east Groningen.
    • 

    corecore