717 research outputs found

    The effect of alkalisation on the mechanical properties of natural fibres

    Get PDF
    A study on the effect of alkalisaton using 3% NaOH solution was carried out on Flax, Kenaf, Abaca and Sisal to observe the impact that the common pre-treatment process has on fibre mechanical properties. The result of the investigation indicated that over-treatment of natural fibres using NaOH could have a negative effect on the base fibre properties. It is concluded that a treatment time of less than 10 minutes is sufficient to remove hemicelluloses and to give the optimum effect

    Vacuum infusion of natural fibre composites for structural applications

    Get PDF
    Numerous methods of manufacturing natural fibre composites have been reported in the literature, including compression moudling, often in conjunction with a hot press. Other forms of composite manufacture include 'Vacuum Assisted Resin Transfer Moulding' (VATRM) and the 'Seemann Composite Resin Infusion Moulding Process' (SCRIMP). These methods have been reported to produce natural fibre composies with reasonable mechanical properties [1-2]. In this paper, a vacuum infusion rig is described that has been developed to produce consistent quality composite plates for studies into optimising natural fibre composites. The process aims to harness the benefits of vacuum infusion and compression moulding, where vacuum infusion encourages the removal of trapped air in the system and hence avoid reduction, and additional compression moulding can help to achieve high volume fractions that are otherwise difficult in other processes

    surfinpy: A surface phase diagram generator

    Get PDF
    A surface phase diagram is a graphical representation of the different physical states of a surface under different conditions. The surface represents the first point of contact between the material and the environment. Thus, understanding the state of surface is crucial for a wide range of problems in materials science concerning the relationship between the state of the surface and the surrounding environmental condtions. Examples include particle morphologies in solid state batteries;1 determining the concentration of adsorbed water at a surface depending on synthesis conditions2;3 catalytic reactions;4 or determing the effect ofdopants and impurities on the surface stability

    Strongly Bound Surface Water Affects the Shape Evolution of Cerium Oxide Nanoparticles

    Get PDF
    The surface structure and composition of functional materials are well-known to be critically important factors controlling the surface reactivity. However, when doped the surface composition will change, and the challenge is to identify its impact on important surface processes and nanoparticle morphologies. We have begun to address this by using a combination of density functional theory and potential-based methods to investigate the effect of surface dopants on water adsorption and morphology of the technologically important material, CeO2_2, which finds application as electrolyte in SOFCs, catalyst in soot combustion, and enzyme mimetic agents in biomedicine. We show that by mapping CeO2_2 surface phase diagrams we can predict nanoparticle morphologies as a function of dopant, temperature, and water partial pressure. Our results show that low-temperature, undoped CeO2_2 nanocubes with active {100} surface sites are thermodynamically stable, but at the typical high temperature, operating conditions favor polyhedra where {100} surfaces are replaced by less active {111} surfaces by surface ion migration. However, doping with trivalent cations, such as Gd3+^{3+}, will increase binding of water on the {100} surfaces and hence act to preserve the cuboidal architecture by capping the active surfaces. As surfaces tend to be decorated by impurities and dopants it is clear that their role should receive more attention and the approach we describe can be routinely applied to nanomaterials, morphologies, and associated active/inactive surfaces

    Computer-Aided Design of Nanoceria Structures as Enzyme Mimetic Agents: The Role of Bodily Electrolytes on Maximising Their Activity

    Get PDF
    Nanoceria, typically used for ‘clean air’ catalytic converter technologies, is the same material that could also be used as a nanomedicine. Specifically, nanoceria, which can capture, store and release oxygen, for oxidative/reductive reactions, can also be used to control oxygen content in cellular environments; as a ‘nanozyme’, nanoceria mimics enzymes by acting as an antioxidant agent. The computational design procedures for predicting active materials for catalytic converters can therefore be used to design active ceria nanozymes. Crucially, the ceria nanomedicine is not a molecule; rather it is a crystal and exploits its unique crystal properties. Here, we use ab initio and classical computer modelling, together with experiment, to design structures for nanoceria that maximises its nanozymetic activity. We predict that the nanomaterial should have (truncated) polyhedral or cuboidal morphologies to expose (active) CeO2 {100} surfaces. It should also contain oxygen vacancies and surface –OH species. We also show that the surface structures strongly affects the biological activity of nanoceria. Analogous to catalyst poisoning, phosphorus 'poisoning' - the interaction of nanoceria with phosphate, a common bodily electrolyte – emanates from phosphate ions binding strongly to CeO2{100} surfaces, inhibiting oxygen capture and release and hence its ability to act as an nanozyme. Conversely, phosphate interaction with {111} surfaces is weak and therefore these surfaces protect the nanozyme against poisoning. The atom-level understanding presented here also illuminates catalytic processes and poisoning in ‘clean-air’ or fuel-cell technologies because the mechanism underpinning and exploited in each technology – oxygen capture, storage and release – is identical

    Tensile testing of cellulose based natural fibers for structural composite applications

    Get PDF
    A series of tensile tests were conducted on a Lloyd LRX tensile testing machine for numerous natural fibers deemed potential candidates for development in composite applications. The tensile tests were conducted on the fibers jute, kenaf, flax, abaca, sisal, hemp, and coir for samples exposed to moisture conditions of (1) room temperature and humidity, (2) 65% moisture content, (3) 90% moisture content, and (4) soaked fiber. These seven fibers were then tested for the four conditions and the mechanical properties of tensile strength, tensile strain to failure, and Young's modulus were calculated for the results. These results were then compared and verified with those from the literature, with some of the fibers showing distinctly promising potential. Additionally, a study on the effect of alkalization using 3% NaOH solution was carried out on flax, kenaf, abaca, and sisal to observe impact that this common fiber pre-treatment process has on fiber mechanical properties. The result of the investigation indicated that over treatment of natural fibers using NaOH could have a negative effect on the base fiber properties. It is consequently apparent that a treatment time of less than 10 min is sufficient to remove hemicelluloses and to give the optimum effect

    Magnetic fields and accretion flows on the classical T Tauri star V2129 Oph

    Full text link
    From observations collected with the ESPaDOnS spectropolarimeter, we report the discovery of magnetic fields at the surface of the mildly accreting classical T Tauri star V2129 Oph. Zeeman signatures are detected, both in photospheric lines and in the emission lines formed at the base of the accretion funnels linking the disc to the protostar, and monitored over the whole rotation cycle of V2129 Oph. We observe that rotational modulation dominates the temporal variations of both unpolarized and circularly polarized line profiles. We reconstruct the large-scale magnetic topology at the surface of V2129 Oph from both sets of Zeeman signatures simultaneously. We find it to be rather complex, with a dominant octupolar component and a weak dipole of strengths 1.2 and 0.35 kG, respectively, both slightly tilted with respect to the rotation axis. The large-scale field is anchored in a pair of 2-kG unipolar radial field spots located at high latitudes and coinciding with cool dark polar spots at photospheric level. This large-scale field geometry is unusually complex compared to those of non-accreting cool active subgiants with moderate rotation rates. As an illustration, we provide a first attempt at modelling the magnetospheric topology and accretion funnels of V2129 Oph using field extrapolation. We find that the magnetosphere of V2129 Oph must extend to about 7R* to ensure that the footpoints of accretion funnels coincide with the high-latitude accretion spots on the stellar surface. It suggests that the stellar magnetic field succeeds in coupling to the accretion disc as far out as the corotation radius, and could possibly explain the slow rotation of V2129 Oph. The magnetospheric geometry we derive produces X-ray coronal fluxes typical of those observed in cTTSs.Comment: MNRAS, in press (18 pages, 17 figures

    An introduction to classical molecular dynamics simulation for experimental scattering users

    Get PDF
    Classical molecular dynamics simulations are a common component of multi-modal analyses from scattering measurements, such as small-angle scattering and diffraction. Users of these experimental techniques often have no formal training in the theory and practice of molecular dynamics simulation, leading to the possibility of these simulations being treated as a "black box" analysis technique. In this article, we describe an open educational resource (OER) designed to introduce classical molecular dynamics to users of scattering methods. This resource is available as a series of interactive web pages, which can be easily accessed by students, and as an open source software repository, which can be freely copied, modified, and redistributed by educators. The topic covered in this OER includes classical atomistic modelling, parameterising interatomic potentials, molecular dynamics simulations, typical sources of error, and some of the approaches to using simulations in the analysis of scattering data.Comment: Electronic Supplementary Information (ESI) available: All analysis/plotting scripts and figure files, allowing for a fully reproducible, and automated, analysis workflow for the work presented is available at \url{https://github.com/arm61/sim_and_scat_paper} (DOI: 10.5281/zenodo.2556826) under a CC BY-SA 4.0 licens

    Correspondence to Elizabeth ( Bessie ) McCaw Boggs Taylor, September 7, 1879 - May 22, 1887

    Get PDF
    Correspondence to Elizabeth ( Bessie ) McCaw Boggs Taylor, September 7, 1879 - May 22, 1887. Box 2, Folder 4.https://digitalcommons.wofford.edu/littlejohnboggs/1014/thumbnail.jp
    • 

    corecore