216 research outputs found

    Relative contributions to vergence eye movements of two binocular cues for motion-in-depth

    Get PDF
    When we track an object moving in depth, our eyes rotate in opposite directions. This type of "disjunctive" eye movement is called horizontal vergence. The sensory control signals for vergence arise from multiple visual cues, two of which, changing binocular disparity (CD) and inter-ocular velocity differences (IOVD), are specifically binocular. While it is well known that the CD cue triggers horizontal vergence eye movements, the role of the IOVD cue has only recently been explored. To better understand the relative contribution of CD and IOVD cues in driving horizontal vergence, we recorded vergence eye movements from ten observers in response to four types of stimuli that isolated or combined the two cues to motion-in-depth, using stimulus conditions and CD/IOVD stimuli typical of behavioural motion-in-depth experiments. An analysis of the slopes of the vergence traces and the consistency of the directions of vergence and stimulus movements showed that under our conditions IOVD cues provided very little input to vergence mechanisms. The eye movements that did occur coinciding with the presentation of IOVD stimuli were likely not a response to stimulus motion, but a phoria initiated by the absence of a disparity signal

    SNAI2/Slug promotes growth and invasion in human gliomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Numerous factors that contribute to malignant glioma invasion have been identified, but the upstream genes coordinating this process are poorly known.</p> <p>Methods</p> <p>To identify genes controlling glioma invasion, we used genome-wide mRNA expression profiles of primary human glioblastomas to develop an expression-based rank ordering of 30 transcription factors that have previously been implicated in the regulation of invasion and metastasis in cancer.</p> <p>Results</p> <p>Using this approach, we identified the oncogenic transcriptional repressor, <it>SNAI2</it>/Slug, among the upper tenth percentile of invasion-related transcription factors overexpressed in glioblastomas. <it>SNAI2 </it>mRNA expression correlated with histologic grade and invasive phenotype in primary human glioma specimens, and was induced by EGF receptor activation in human glioblastoma cells. Overexpression of <it>SNAI2/</it>Slug increased glioblastoma cell proliferation and invasion <it>in vitro </it>and promoted angiogenesis and glioblastoma growth <it>in vivo</it>. Importantly, knockdown of endogenous <it>SNAI2</it>/Slug in glioblastoma cells decreased invasion and increased survival in a mouse intracranial human glioblastoma transplantation model.</p> <p>Conclusion</p> <p>This genome-scale approach has thus identified <it>SNAI2</it>/Slug as a regulator of growth and invasion in human gliomas.</p

    SLUG transcription factor : a pro-survival and prognostic factor in gastrointestinal stromal tumour

    Get PDF
    Background: The SLUG transcription factor has been linked with the KIT signalling pathway that is important for gastrointestinal stromal tumour (GIST) tumourigenesis. Its clinical significance in GIST is unknown. Methods: Influence of SLUG expression on cell proliferation and viability were investigated in GIST48 and GIST882 cell lines. The association between tumour SLUG expression in immunohistochemistry and recurrence-free survival (RFS) was studied in two clinical GIST series, one with 187 patients treated with surgery alone, and another one with 313 patients treated with surgery and adjuvant imatinib. Results: SLUG downregulation inhibited cell proliferation, induced cell death in both cell lines, and sensitised GIST882 cells to lower imatinib concentrations. SLUG was expressed in 125 (25.0%) of the 500 clinical GISTs evaluated, and expression was associated with several factors linked with unfavourable prognosis. SLUG expression was associated with unfavourable RFS both when patients were treated with surgery alone (HR = 3.40, 95% CI = 1.67-6.89, P = 0.001) and when treated with surgery plus adjuvant imatinib (HR = 1.83, 95% CI = 1.29-2.60, P = 0.001). Conclusions: GIST patients with high tumour SLUG expression have unfavourable RFS. SLUG may mediate pro-survival signalling in GISTs.Peer reviewe

    Why Self-Induced Pain Feels Less Painful than Externally Generated Pain: Distinct Brain Activation Patterns in Self- and Externally Generated Pain

    Get PDF
    Voluntary movement generally inhibits sensory systems. However, it is not clear how such movement influences pain. In the present study, subjects actively or passively experienced mechanical pain or pressure during functional MRI scanning. Pain and pressure were induced using two modified grip strengthener rings, each twined with four crystal bead strings, with polyhedral beads to induce pain, or spherical beads to induce pressure. Subjects held one ring in the left hand and were either asked to squeeze their left hand with their right hand (i.e., active pain or pressure), or to have their left hand squeezed by the experimenter (i.e., passive pain or pressure). Subjects rated the intensity and unpleasantness of the pain sensation lower in the active procedure than in the passive one. Correspondingly, pain-related brain areas were inhibited in the case of self-generated pain, including the primary somatosensory cortex (SI), anterior cingulate cortex (ACC), and the thalamus. These results suggest that active movement behaviorally inhibits concomitant mechanical pain, accompanied by an inhibition of pain response in pain-related brain areas such as the SI cortex. This might be part of the mechanisms underlying the kinesitherapy for pain treatment

    Staurosporine augments EGF-mediated EMT in PMC42-LA cells through actin depolymerisation, focal contact size reduction and Snail1 induction – A model for cross-modulation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A feature of epithelial to mesenchymal transition (EMT) relevant to tumour dissemination is the reorganization of actin cytoskeleton/focal contacts, influencing cellular ECM adherence and motility. This is coupled with the transcriptional repression of E-cadherin, often mediated by Snail1, Snail2 and Zeb1/δEF1. These genes, overexpressed in breast carcinomas, are known targets of growth factor-initiated pathways, however it is less clear how alterations in ECM attachment cross-modulate to regulate these pathways. EGF induces EMT in the breast cancer cell line PMC42-LA and the kinase inhibitor staurosporine (ST) induces EMT in embryonic neural epithelial cells, with F-actin de-bundling and disruption of cell-cell adhesion, via inhibition of aPKC.</p> <p>Methods</p> <p>PMC42-LA cells were treated for 72 h with 10 ng/ml EGF, 40 nM ST, or both, and assessed for expression of E-cadherin repressor genes (Snail1, Snail2, Zeb1/δEF1) and EMT-related genes by QRT-PCR, multiplex tandem PCR (MT-PCR) and immunofluorescence +/- cycloheximide. Actin and focal contacts (paxillin) were visualized by confocal microscopy. A public database of human breast cancers was assessed for expression of Snail1 and Snail2 in relation to outcome.</p> <p>Results</p> <p>When PMC42-LA were treated with EGF, Snail2 was the principal E-cadherin repressor induced. With ST or ST+EGF this shifted to Snail1, with more extreme EMT and Zeb1/δEF1 induction seen with ST+EGF. ST reduced stress fibres and focal contact size rapidly and independently of gene transcription. Gene expression analysis by MT-PCR indicated that ST repressed many genes which were induced by EGF (EGFR, CAV1, CTGF, CYR61, CD44, S100A4) and induced genes which alter the actin cytoskeleton (NLF1, NLF2, EPHB4). Examination of the public database of breast cancers revealed tumours exhibiting higher Snail1 expression have an increased risk of disease-recurrence. This was not seen for Snail2, and Zeb1/δEF1 showed a reverse correlation with lower expression values being predictive of increased risk.</p> <p>Conclusion</p> <p>ST in combination with EGF directed a greater EMT via actin depolymerisation and focal contact size reduction, resulting in a loosening of cell-ECM attachment along with Snail1-Zeb1/δEF1 induction. This appeared fundamentally different to the EGF-induced EMT, highlighting the multiple pathways which can regulate EMT. Our findings add support for a functional role for Snail1 in invasive breast cancer.</p

    Effect of Lactobacillus casei on the production of pro-inflammatory markers in streptozotocin-induced diabetic rats.

    Get PDF
    It has been demonstrated that probiotic supplementation has positive effects in several murine models of disease through influences on host immune responses. This study examined the effect of Lactobacillus casei strain Shirota (L. casei Shirota) on the blood glucose, C-reactive protein (CRP), Interleukin-6 (IL-6), Interleukin-4 (IL-4), and body weight among STZ-induced diabetic rats. Diabetes mellitus was induced by streptozotocin (STZ, 50 mg/kg BW) in male Sprague–Dawley rats. Streptozotocin caused a significant increase in the blood glucose levels, CRP, and IL-6. L. casei Shirota supplementation lowered the CRP and IL-6 levels but had no significant effect on the blood glucose levels, body weight, or IL-4. Inflammation was determined histologically. The presence of the innate immune cells was not detectable in the liver of L. casei Shirota-treated hyperglycemic rats. The probiotic L. casei Shirota significantly lowered blood levels of pro-inflammatory cytokines (IL-6, CRP) and neutrophils in diabetic rats, showing a lower risk of diabetes mellitus and its complications

    Dedifferentiation of Foetal CNS Stem Cells to Mesendoderm-Like Cells through an EMT Process

    Get PDF
    Tissue-specific stem cells are considered to have a limited differentiation potential. Recently, this notion was challenged by reports that showed a broader differentiation potential of neural stem cells, in vitro and in vivo, although the molecular mechanisms that regulate plasticity of neural stem cells are unknown. Here, we report that neural stem cells derived from mouse embryonic cortex respond to Lif and serum in vitro and undergo epithelial to mesenchymal transition (EMT)-mediated dedifferentiation process within 48 h, together with transient upregulation of pluripotency markers and, more notably, upregulation of mesendoderm genes, Brachyury (T) and Sox17. These induced putative mesendoderm cells were injected into early gastrulating chick embryos, which revealed that they integrated more efficiently into mesoderm and endoderm lineages compared to non-induced cells. We also found that TGFβ and Jak/Stat pathways are necessary but not sufficient for the induction of mesendodermal phenotype in neural stem cells. These results provide insights into the regulation of plasticity of neural stem cells through EMT. Dissecting the regulatory pathways involved in these processes may help to gain control over cell fate decisions
    corecore