89 research outputs found

    Atmospheric synoptic conditions of snow precipitation in East Antarctica using ice core and reanalysis data

    Get PDF
    In the framework of the International Partnerships in Ice Core Sciences (IPCS) initiatives the GV7 site (70°41’ S – 158°51’ E) in East Antarctica was chosen as the new drilling site for the Italian contribution to the understanding of the climatic variability in the last 2000 years (IPICS 2k Array). Water stable isotopes and snow accumulation (SMB) values from a shallow firn core, obtained at GV7 during the 2001-2002 International Trans-Antarctic Scientific Expedition (ITASE) traverse, are analyzed and compared with different meteorological model output in order to characterize the atmospheric synoptic conditions driving precipitation events at the site. On annual basis, ECMWF +24h forecasted snowfalls (SF) seem to well reproduce GV7 SMB values trend for the period from 1980 to 2005. Calculated air mass back-trajectories show that Eastern Indian - Western Pacific oceans represent the main moisture path toward the site during autumn - winter season. Analysis of the ECMWF 500 hPa Geopotential height field (GP500) anomalies shows that atmospheric blocking events developing between 130°E and 150°W at high latitudes drive the GV7 SMB by blocking zonal flow and conveying warm and moist deep air masses from ocean into the continental interior. On inter-annual basis, The SF variability over GV7 region follows the temporal oscillation of the third CEOF mode (CEOF3 10% of the total explained variance) of a combined complex empirical orthogonal function (CEOF) performed over GP500 and SF field. The CEOF3 highlights an oscillating feature, with wavenumber 2, in GP500 field over the Western Pacific-Eastern Indian Oceans and propagating westward. The pattern is deeply correlated with the Indian Dipole Oscillation and ENSO and their associated quasi-stationary Rossby waves propagating from the lower toward the higher latitudes

    Quantitative precipitation estimation over antarctica using different ze-sr relationships based on snowfall classification combining ground observations

    Get PDF
    Snow plays a crucial role in the hydrological cycle and energy budget of the Earth, and remote sensing instruments with the necessary spatial coverage, resolution, and temporal sampling are essential for snowfall monitoring. Among such instruments, ground-radars have scanning capability and a resolution that make it possible to obtain a 3D structure of precipitating systems or vertical profiles when used in profiling mode. Radars from space have a lower spatial resolution, but they provide a global view. However, radar-based quantitative estimates of solid precipitation are still a challenge due to the variability of the microphysical, geometrical, and electrical features of snow particles. Estimations of snowfall rate are usually accomplished using empirical, long-term relationships between the equivalent radar reflectivity factor (Ze) and the liquid-equivalent snowfall rate (SR). Nevertheless, very few relationships take advantage of the direct estimation of the microphysical characteristics of snowflakes. In this work, we used a K-band vertically pointing radar collocated with a laser disdrometer to develop Ze-SR relationships as a function of snow classification. The two instruments were located at the Italian Antarctic Station Mario Zucchelli. The K-band radar probes the low-level atmospheric layers, recording power spectra at 32 vertical range gates. It was set at a high vertical resolution (35 m), with the first trusted range gate at a height of only 100 m. The disdrometer was able to provide information on the particle size distribution just below the trusted radar gate. Snow particles were classified into six categories (aggregate, dendrite aggregate, plate aggregate, pristine, dendrite pristine, plate pristine). The method was applied to the snowfall events of the Antarctic summer seasons of 2018–2019 and 2019–2020, with a total of 23,566 min of precipitation, 15.3% of which was recognized as showing aggregate features, 33.3% dendrite aggregate, 7.3% plates aggregate, 12.5% pristine, 24% dendrite pristine, and 7.6% plate pristine. Applying the appropriate Ze-SR relationship in each snow category, we calculated a total of 87 mm water equivalent, differing from the total found by applying a unique Ze-SR. Our estimates were also benchmarked against a colocated Alter-shielded weighing gauge, resulting in a difference of 3% in the analyzed periods

    The Impact of Precipitation and Sublimation Processes on Snow Accumulation: Preliminary Results

    Get PDF
    The need for climate change prediction has focused attention on the Surface Mass Balance (SMB) of the Antarctic continent and on how it influences the sea level. The SMB of the Antarctic plateau is governed by the equilibrium between precipitation and ablation processes such as sublimation and wind-borne snow redistribution. At scales of hundreds of kilometres snowfall variability dominates the snow accumulation process (Dery and Yau, 2002); at smaller scales, postdepositional process such as wind-borne redistribution, surface sublimation and snowdrift sublimation becomes more important. In recent years the sublimation phenomenon has received much attention from the glacial-meteorological community, and some theoretical studies have tried to model it (Bintanja, 1998; Dery & Yau, 2001b; Frezzotti, 2004). There are two different types of sublimation: surface sublimation and blowing snow sublimation. Surface sublimation is mostly determined by the continual exchange of water between the air (in the vapour phase) and the snow pack (in the solid phase) due to solar irradiance. Blowing snow sublimation is possibly the more effective of the two sublimation processes. It occurs when snow particles at the surface are blown by winds exceeding a certain threshold value. Particles suspended in the sub saturated Atmospheric Boundary Layer (ABL) sublimate at a relatively fast rate, cooling air mass transported by the wind and increasing the local atmospheric moisture content. When the first few meters of the ABL are completely saturated, the process is dumped. It takes a long time to meet this condition because katabatic winds transport saturated air masses to the coast, thereby reactivating sublimation. The role of sublimation in snow accumulation and its high variability at local scales are not fully understood due to the few available measurements in Antarctica. Further study and field experiments are required

    Ten years of isotopic composition of precipitation at Concordia Station, East Antarctica

    Get PDF
    Oxygen and Hydrogen isotopic composition (delta18O and deltaD) in ice cores has been widely used as a proxy for reconstructing past temperature variations. However, the atmospheric dynamics determining the precipitation isotopic composition on the Antarctic Plateau are yet to be fully understood, as well as the post-depositional processes modifying the pristine snow isotopic signal: both are fundamental for the interpretation of the isotopic records from deep Antarctic ice cores drilled in low accumulation areas in order to improve past temperature reconstructions. Since 2008, daily precipitation has been continuously collected by the winter-over personnel on raised surfaces (height: 1 m) placed in the clean area of Concordia Station on the East Antarctic plateau. Each sample has been analyzed for 18O, D and deuterium excess (d): this represents a unique record, still ongoing, for the isotopic composition of precipitation in inland Antarctica. In order to better comprehend the relationship between local temperature and the isotopic signal of precipitation, temperature data (T2m) from the Dome C Automatic Weather Station of the Programma Nazionale di Ricerche in Antartide (PNRA) were correlated with precipitation sample delta18O, deltaD and d from 2008 to 2017. A significant positive correlation between delta18O and deltaD of precipitation and T2m is observed when using both daily and monthly-averaged data. The measured precipitation isotopic data were also compared to the simulated delta18O, deltaD and d from the isotope-enabled atmospheric general circulation models ECHAM5-wiso and ECHAM6-wiso, with the latter showing significant improvement in simulating the isotopic data of precipitation

    A synthesis of the Antarctic surface mass balance during the last 800 yr

    Get PDF
    Global climate models suggest that Antarctic snowfall should increase in a warming climate and mitigate rises in the sea level. Several processes affect surface mass balance (SMB), introducing large uncertainties in past, present and future ice sheet mass balance. To provide an extended perspective on the past SMB of Antarctica, we used 67 firn/ice core records to reconstruct the temporal variability in the SMB over the past 800 yr and, in greater detail, over the last 200 yr. <br><br> Our SMB reconstructions indicate that the SMB changes over most of Antarctica are statistically negligible and that the current SMB is not exceptionally high compared to the last 800 yr. High-accumulation periods have occurred in the past, specifically during the 1370s and 1610s. However, a clear increase in accumulation of more than 10% has occurred in high SMB coastal regions and over the highest part of the East Antarctic ice divide since the 1960s. To explain the differences in behaviour between the coastal/ice divide sites and the rest of Antarctica, we suggest that a higher frequency of blocking anticyclones increases the precipitation at coastal sites, leading to the advection of moist air in the highest areas, whereas blowing snow and/or erosion have significant negative impacts on the SMB at windy sites. Eight hundred years of stacked records of the SMB mimic the total solar irradiance during the 13th and 18th centuries. The link between those two variables is probably indirect and linked to a teleconnection in atmospheric circulation that forces complex feedback between the tropical Pacific and Antarctica via the generation and propagation of a large-scale atmospheric wave train

    Dust Transport to the Taylor Glacier, Antarctica, During the Last Interglacial

    Full text link
    Changes in the composition of dust trapped in ice provide evidence of past atmospheric circulation and earth surface conditions. Investigations of dust provenance in Antarctic ice during glacial and interglacial periods indicate that South America is the primary dust source during both climate regimes. Here, we present results from a new ice core dust archive extracted from the Taylor Glacier in coastal East Antarctica during the deglacial transition from Marine Isotope Stage 6 to 5e. Radiogenic strontium and neodymium isotopes indicate that last interglacial dust is young and volcanic, in contrast to the observed preindustrial and Holocene (Marine Isotope Stage 1) dust composition. The dust composition differences from the last interglacial and current interglacial period at the site require a profound difference in atmospheric transport and environmental conditions. We consider several potential causes for enhanced transport of volcanic material to the site, including increased availability of volcanic material and large‐scale atmospheric circulation changes.Plain Language SummaryFluctuations in the isotopic composition of dust particles transported atmospherically and trapped in East Antarctic ice during glacial and interglacial periods provide glimpses into past earth surface conditions and atmospheric dynamics through time. Here we present new ice core records of dust from the Taylor Glacier (Antarctica), extending back to the transition into the last interglacial period (~130,000 years ago). Dust deposited at this site during the last interglacial period has a significantly more volcanic dust composition compared to the current interglacial dust, caused by a pronounced wind direction change and/or increased subaerial exposure of volcanic material. The distinct dust compositions during two separate interglacial periods suggest significant differences in conditions at the dust source areas and atmospheric dynamics to this peripheral Antarctic site.Key PointsLast interglacial dust composition in Taylor Glacier ice is distinct from MIS 1 recordSr and Nd isotope signatures indicate a young volcanic sourceGeochemical data suggest a change in provenance and atmospheric circulation between MIS 5e and MIS 1Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/148354/1/grl58638_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/148354/2/grl58638.pd

    The influence of the synoptic regime on stable water isotopes in precipitation at Dome C, East Antarctica

    Get PDF
    Abstract. The correct derivation of paleotemperatures from ice cores requires exact knowledge of all processes involved before and after the deposition of snow and the subsequent formation of ice. At the Antarctic deep ice core drilling site Dome C, a unique data set of daily precipitation amount, type, and stable water isotope ratios is available that enables us to study in detail atmospheric processes that influence the stable water isotope ratio of precipitation. Meteorological data from both automatic weather station and a mesoscale atmospheric model were used to investigate how different atmospheric flow patterns determine the precipitation parameters. A classification of synoptic situations that cause precipitation at Dome C was established and, together with back-trajectory calculations, was utilized to estimate moisture source areas. With the resulting source area conditions (wind speed, sea surface temperature, and relative humidity) as input, the precipitation stable isotopic composition was modeled using the so-called Mixed Cloud Isotope Model (MCIM). The model generally underestimates the depletion of 18O in precipitation, which was not improved by using condensation temperature rather than inversion temperature. Contrary to the assumption widely used in ice core studies, a more northern moisture source does not necessarily mean stronger isotopic fractionation. This is due to the fact that snowfall events at Dome C are often associated with warm air advection due to amplification of planetary waves, which considerably increases the site temperature and thus reduces the temperature difference between source area and deposition site. In addition, no correlation was found between relative humidity at the moisture source and the deuterium excess in precipitation. The significant difference in the isotopic signal of hoarfrost and diamond dust was shown to disappear after removal of seasonality. This study confirms the results of an earlier study carried out at Dome Fuji with a shorter data set using the same methods

    A Nine-year series of daily oxygen and hydrogen isotopic composition of precipitation at Concordia station, East Antarctica

    Get PDF
    The atmospheric processes determining the isotopic composition of precipitation on the Antarctic plateau are yet to be fully understood, as well as the post-depositional processes altering the snow pristine isotopic signal. Improving the comprehension of these physical mechanisms is of crucial importance for interpreting the isotopic records from ice cores drilled in the low accumulation area of Antarctica, e.g., the upcoming Beyond EPICA drilling at Little Dome C. Up to now, few records of the isotopic composition of precipitation in Antarctica are available, most of them limited in time or sampling frequency. Here we present a 9-year long ÎŽ18O and ÎŽD record (2008-2016) of precipitation at Concordia base, East Antarctica. The snow is collected daily on a raised platform (1 m), positioned in the clean area of the station; the precipitation collection is still being carried out each year by the winter over personnel. A significant positive correlation between isotopes in precipitation and 2-m air temperature is observed at both seasonal and interannual scale; the lowest temperature and isotopic values are usually recorded during winters characterized by a strongly positive Southern Annular Mode index. To improve the understanding of the mechanisms governing the isotopic composition of precipitation, we compare the isotopic data of Concordia samples with on-site observations, meteorological data from the Dome C AWS of the University of Wisconsin-Madison, as well as with high-resolution simulation results from the isotope-enabled atmospheric general circulation models ECHAM5-wiso and ECHAM6-wiso, nudged with the ERA-Interim and ERA5 reanalyses respectively

    Molecular insights into RmcA-mediated c-di-GMP consumption: Linking redox potential to biofilm morphogenesis in Pseudomonas aeruginosa

    Get PDF
    The ability of many bacteria to form biofilms contributes to their resilience and makes infections more difficult to treat. Biofilm growth leads to the formation of internal oxygen gradients, creating hypoxic subzones where cellular reducing power accumulates, and metabolic activities can be limited. The pathogen Pseudomonas aeruginosa counteracts the redox imbalance in the hypoxic biofilm subzones by producing redox-active electron shuttles (phenazines) and by secreting extracellular matrix, leading to an increased surface area-to-volume ratio, which favors gas exchange. Matrix production is regulated by the second messenger bis-(3â€Č,5â€Č)-cyclic-dimeric-guanosine monophosphate (c-di-GMP) in response to different environmental cues. RmcA (Redox modulator of c-di-GMP) from P. aeruginosa is a multidomain phosphodiesterase (PDE) that modulates c-di-GMP levels in response to phenazine availability. RmcA can also sense the fermentable carbon source arginine via a periplasmic domain, which is linked via a transmembrane domain to four cytoplasmic Per-Arnt-Sim (PAS) domains followed by a diguanylate cyclase (DGC) and a PDE domain. The biochemical characterization of the cytoplasmic portion of RmcA reported in this work shows that the PAS domain adjacent to the catalytic domain tunes RmcA PDE activity in a redox-dependent manner, by differentially controlling protein conformation in response to FAD or FADH2. This redox-dependent mechanism likely links the redox state of phenazines (via FAD/FADH2 ratio) to matrix production as indicated by a hyperwrinkling phenotype in a macrocolony biofilm assay. This study provides insights into the role of RmcA in transducing cellular redox information into a structural response of the biofilm at the population level. Conditions of resource (i.e. oxygen and nutrient) limitation arise during chronic infection, affecting the cellular redox state and promoting antibiotic tolerance. An understanding of the molecular linkages between condition sensing and biofilm structure is therefore of crucial importance from both biological and engineering standpoints.The authors would like to acknowledge Sapienza University of Rome [RM120172A7AD98EB to SR, RM1221815D52AB32 to APaiardini and AR12117A63EE6037; AR2221816C44C7B3 to CSR] for financial support. AUC experiments have received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101004806. We thank Patrick England of the Plateforme de Biophysique MolĂ©culaire of the C2RT (Institut Pasteur) for fruitful discussion

    Evaluation of the CloudSat surface snowfall product over Antarctica using ground-based precipitation radars

    Get PDF
    In situ observations of snowfall over the Antarctic Ice Sheet are scarce. Currently, continent-wide assessments of snowfall are limited to information from the Cloud Profiling Radar on board the CloudSat satellite, which has not been evaluated up to now. In this study, snowfall derived from CloudSat is evaluated using three ground-based vertically profiling 24&thinsp;GHz precipitation radars (Micro Rain Radars: MRRs). Firstly, using the MRR long-term measurement records, an assessment of the uncertainty caused by the low temporal sampling rate of CloudSat (one revisit per 2.1 to 4.5 days) is performed. The 10–90th-percentile temporal sampling uncertainty in the snowfall climatology varies between 30&thinsp;% and 40&thinsp;% depending on the latitudinal location and revisit time of CloudSat. Secondly, an evaluation of the snowfall climatology indicates that the CloudSat product, derived at a resolution of 1∘ latitude by 2∘ longitude, is able to accurately represent the snowfall climatology at the three MRR sites (biases&thinsp;&lt;&thinsp;15&thinsp;%), outperforming ERA-Interim. For coarser and finer resolutions, the performance drops as a result of higher omission errors by CloudSat. Moreover, the CloudSat product does not perform well in simulating individual snowfall events. Since the difference between the MRRs and the CloudSat climatology are limited and the temporal uncertainty is lower than current Climate Model Intercomparison Project Phase 5 (CMIP5) snowfall variability, our results imply that the CloudSat product is valuable for climate model evaluation purposes.</p
    • 

    corecore