192 research outputs found

    Effective combination treatment of GD2-expressing neuroblastoma and Ewing's sarcoma using anti-GD2 ch14.18/CHO antibody with Vγ9Vδ2+ γδT cells

    Get PDF
    Gamma delta T lymphocytes (γδT cells) have pleiotropic properties including innate cytotoxicity, which make them attractive effectors for cancer immunotherapy. Combination treatment with zoledronic acid and IL-2 can activate and expand the most common subset of blood γδT, which express the Vγ9Vδ2 T cell receptor (TCR) (Vδ2 T cells). Vγ9Vδ2 T cells are equipped for antibody-dependent cell-mediated cytotoxicity (ADCC) through expression of the low-affinity FcγR CD16. GD2 is a highly ranked tumor associated antigen for immunotherapy due to bright expression on the cell surface, absent expression on normal tissues and availability of therapeutic antibodies with known efficacy in neuroblastoma. To explore the hypothesis that zoledronic acid, IL-2 and anti-GD2 antibodies will synergize in a therapeutic combination, we evaluated in vitro cytotoxicity and tumor growth inhibition in the GD2 expressing cancers neuroblastoma and Ewing's sarcoma. Vδ2 T cells exert ADCC against GD2-expressing Ewing's sarcoma and neuroblastoma cell lines, an effect which correlates with the brightness of GD2 expression. In an immunodeficient mouse model of small established GD2-expressing Ewing's sarcoma or neuroblastoma tumors, the combination of adoptively transferred Vδ2+ T cells, expanded in vitro with zoledronic acid and IL-2, with anti-GD2 antibody ch14.18/CHO, and with systemic zoledronic acid, significantly suppressed tumor growth compared to antibody or γδT cell-free controls. Combination treatment using ch14.18/CHO, zoledronic acid and IL-2 is more effective than their use in isolation. The already-established safety profiles of these agents make testing of the combination in GD2 positive cancers such as neuroblastoma or Ewing's sarcoma both rational and feasible

    CD171- and GD2-specific CAR-T cells potently target retinoblastoma cells in preclinical in vitro testing

    Get PDF
    BACKGROUND: Chimeric antigen receptor (CAR)-based T cell therapy is in early clinical trials to target the neuroectodermal tumor, neuroblastoma. No preclinical or clinical efficacy data are available for retinoblastoma to date. Whereas unilateral intraocular retinoblastoma is cured by enucleation of the eye, infiltration of the optic nerve indicates potential diffuse scattering and tumor spread leading to a major therapeutic challenge. CAR-T cell therapy could improve the currently limited therapeutic strategies for metastasized retinoblastoma by simultaneously killing both primary tumor and metastasizing malignant cells and by reducing chemotherapy-related late effects. METHODS: CD171 and GD2 expression was flow cytometrically analyzed in 11 retinoblastoma cell lines. CD171 expression and T cell infiltration (CD3+) was immunohistochemically assessed in retrospectively collected primary retinoblastomas. The efficacy of CAR-T cells targeting the CD171 and GD2 tumor-associated antigens was preclinically tested against three antigen-expressing retinoblastoma cell lines. CAR-T cell activation and exhaustion were assessed by cytokine release assays and flow cytometric detection of cell surface markers, and killing ability was assessed in cytotoxic assays. CAR constructs harboring different extracellular spacer lengths (short/long) and intracellular co-stimulatory domains (CD28/4-1BB) were compared to select the most potent constructs. RESULTS: All retinoblastoma cell lines investigated expressed CD171 and GD2. CD171 was expressed in 15/30 primary retinoblastomas. Retinoblastoma cell encounter strongly activated both CD171-specific and GD2-specific CAR-T cells. Targeting either CD171 or GD2 effectively killed all retinoblastoma cell lines examined. Similar activation and killing ability for either target was achieved by all CAR constructs irrespective of the length of the extracellular spacers and the co-stimulatory domain. Cell lines differentially lost tumor antigen expression upon CAR-T cell encounter, with CD171 being completely lost by all tested cell lines and GD2 further down-regulated in cell lines expressing low GD2 levels before CAR-T cell challenge. Alternating the CAR-T cell target in sequential challenges enhanced retinoblastoma cell killing. CONCLUSION: Both CD171 and GD2 are effective targets on human retinoblastoma cell lines, and CAR-T cell therapy is highly effective against retinoblastoma in vitro. Targeting of two different antigens by sequential CAR-T cell applications enhanced tumor cell killing and preempted tumor antigen loss in preclinical testing

    Lenvatinib with etoposide plus ifosfamide in patients with refractory or relapsed osteosarcoma (ITCC-050): a multicentre, open-label, multicohort, phase 1/2 study

    Get PDF
    Background: Tyrosine kinase inhibitors have shown activity in osteosarcoma and might enhance the efficacy of chemotherapy. We aimed to determine the recommended phase 2 dose and antitumour activity of lenvatinib with etoposide plus ifosfamide in patients with refractory or relapsed osteosarcoma. // Methods: This multicentre, open-label, multicohort, phase 1/2 trial was done at 17 hospitals in six countries. Eligible patients were aged 2–25 years, had relapsed or refractory osteosarcoma, measurable or evaluable disease per Response Evaluation Criteria in Solid Tumors version 1.1, Lansky play–performance score or Karnofsky performance score of 50% or higher, up to one previous VEGF or VEGF receptor-targeted therapy, and a life expectancy of at least 3 months. This study includes a combination dose-finding phase 1 part (cohort 3A) and a phase 2 combination expansion in patients with osteosarcoma (cohort 3B). Lenvatinib was administered orally at a starting dose of 11 mg/m2 per day, capped at 24 mg per day, and etoposide (100 mg/m2 per day) plus ifosfamide (3000 mg/m2 per day) were administered intravenously on days 1–3 of each 21-day cycle for a maximum of five cycles. Lenvatinib monotherapy continued after these five cycles until disease progression, toxic effects, or patient choice to discontinue. The phase 1 primary endpoint was to determine the recommended phase 2 dose by evaluating dose-limiting toxicity and the phase 2 primary endpoint was progression-free survival at 4 months. Progression-free survival was measured in the full analysis set, which included all patients enrolled for efficacy outcomes; safety was assessed in all patients who received any study drug. This study is registered with ClinicalTrials.gov, NCT02432274. // Findings: 30 patients were screened for enrolment into cohort 3A between May 9, 2016, and June 3, 2019, and 22 patients for enrolment into cohort 3B between Sept 13, 2018, and July 18, 2019. Eight patients from cohort 3A and two from cohort 3B were ineligible for enrolment in the study. In phase 1, dose-limiting toxicities were observed in three patients (one in the lenvatinib 11 mg/m2 combination group and two in the 14 mg/m2 combination group) and the recommended phase 2 dose was determined as lenvatinib 14 mg/m2 per day (with daily dose cap of 24 mg) and etoposide 100 mg/m2 per day plus ifosfamide 3000 mg/m2 per day administered intravenously on days 1–3 of each 21-day cycle for a maximum of five cycles. 35 patients from phase 1 (cohort 3A; n=15) and phase 2 (cohort 3B; n=20) were treated at the recommended phase 2 dose and their results were pooled. Progression-free survival at 4 months was 51% (95% CI 34–69) in 18 of 35 patients per the binomial estimate. The most common grade 3–4 treatment-emergent adverse events were neutropenia (27 [77%] of 35), thrombocytopenia (25 [71%]), anaemia (19 [54%]), and decreased white blood cell count (19 [54%]). 26 [74%] of 35 patients had serious treatment-emergent adverse events and no treatment-related deaths occurred. // Interpretation: Lenvatinib with etoposide plus ifosfamide shows promising antitumour activity with no new safety signals in patients with refractory and relapsed osteosarcoma. These findings warrant further investigation in an ongoing randomised phase 2 study (NCT04154189)

    Phase I/II study of single-agent lenvatinib in children and adolescents with refractory or relapsed solid malignancies and young adults with osteosarcoma (ITCC-050)

    Get PDF
    Background: We report results from the phase I dose-finding and phase II expansion part of a multicenter, open-label study of single-agent lenvatinib in pediatric and young adult patients with relapsed/refractory solid tumors, including osteosarcoma and radioiodine-refractory differentiated thyroid cancer (RR-DTC) (NCT02432274). // Patients and methods: The primary endpoint of phase I was to determine the recommended phase II dose (RP2D) of lenvatinib in children with relapsed/refractory solid malignant tumors. Phase II primary endpoints were progression-free survival rate at 4 months (PFS-4) for patients with relapsed/refractory osteosarcoma; and objective response rate/best overall response for patients with RR-DTC at the RP2D. // Results: In phase I, 23 patients (median age, 12 years) were enrolled. With lenvatinib 14 mg/m2, three dose-limiting toxicities (hypertension, n = 2; increased alanine aminotransferase, n = 1) were reported, establishing 14 mg/m2 as the RP2D. In phase II, 31 patients with osteosarcoma (median age, 15 years) and 1 patient with RR-DTC (age 17 years) were enrolled. For the osteosarcoma cohort, PFS-4 (binomial estimate) was 29.0% [95% confidence interval (CI) 14.2% to 48.0%; full analysis set: n = 31], PFS-4 by Kaplan–Meier estimate was 37.8% (95% CI 20.0% to 55.4%; full analysis set) and median PFS was 3.0 months (95% CI 1.8-5.4 months). The objective response rate was 6.7% (95% CI 0.8% to 22.1%). The patient with RR-DTC had a best overall response of partial response. Some 60.8% of patients in phase I and 22.6% of patients in phase II (with osteosarcoma) had treatment-related treatment-emergent adverse events of grade ≥3. // Conclusions: The lenvatinib RP2D was 14 mg/m2. Single-agent lenvatinib showed activity in osteosarcoma; however, the null hypothesis could not be rejected. The safety profile was consistent with previous tyrosine kinase inhibitor studies. Lenvatinib is currently being investigated in osteosarcoma in combination with chemotherapy as part of a randomized, controlled trial (NCT04154189), in pediatric solid tumors in combination with everolimus (NCT03245151), and as a single agent in a basket study with enrollment ongoing (NCT04447755)

    Dexamethasone vs prednisone in induction treatment of pediatric ALL: results of the randomized trial AIEOP-BFM ALL 2000

    Get PDF
    Induction therapy for childhood acute lymphoblastic leukemia (ALL) traditionally includes prednisone; yet, dexamethasone may have higher antileukemic potency, leading to fewer relapses and improved survival. After a 7-day prednisone prephase, 3720 patients enrolled on trial Associazione Italiana di Ematologia e Oncologia Pediatrica and Berlin-Frankfurt-Münster (AIEOP-BFM) ALL 2000 were randomly selected to receive either dexamethasone (10 mg/m(2) per day) or prednisone (60 mg/m(2) per day) for 3 weeks plus tapering in induction. The 5-year cumulative incidence of relapse (± standard error) was 10.8 ± 0.7% in the dexamethasone and 15.6 ± 0.8% in the prednisone group (P < .0001), showing the largest effect on extramedullary relapses. The benefit of dexamethasone was partially counterbalanced by a significantly higher induction-related death rate (2.5% vs 0.9%, P = .00013), resulting in 5-year event-free survival rates of 83.9 ± 0.9% for dexamethasone and 80.8 ± 0.9% for prednisone (P = .024). No difference was seen in 5-year overall survival (OS) in the total cohort (dexamethasone, 90.3 ± 0.7%; prednisone, 90.5 ± 0.7%). Retrospective analyses of predefined subgroups revealed a significant survival benefit from dexamethasone only for patients with T-cell ALL and good response to the prednisone prephase (prednisone good-response [PGR]) (dexamethasone, 91.4 ± 2.4%; prednisone, 82.6 ± 3.2%; P = .036). In patients with precursor B-cell ALL and PGR, survival after relapse was found to be significantly worse if patients were previously assigned to the dexamethasone arm. We conclude that, for patients with PGR in the large subgroup of precursor B-cell ALL, dexamethasone especially reduced the incidence of better salvageable relapses, resulting in inferior survival after relapse. This explains the lack of benefit from dexamethasone in overall survival that we observed in the total cohort except in the subset of T-cell ALL patients with PGR. This trial was registered at www.clinicaltrials.gov (BFM: NCT00430118, AIEOP: NCT00613457)

    Single-cell transcriptomics identifies potential cells of origin of MYC rhabdoid tumors

    Get PDF
    Rhabdoid tumors (RT) are rare and highly aggressive pediatric neoplasms. Their epigenetically-driven intertumoral heterogeneity is well described; however, the cellular origin of RT remains an enigma. Here, we establish and characterize different genetically engineered mouse models driven under the control of distinct promoters and being active in early progenitor cell types with diverse embryonic onsets. From all models only Sox2-positive progenitor cells give rise to murine RT. Using single-cell analyses, we identify distinct cells of origin for the SHH and MYC subgroups of RT, rooting in early stages of embryogenesis. Intra- and extracranial MYC tumors harbor common genetic programs and potentially originate from fetal primordial germ cells (PGCs). Using PGC specific Smarcb1 knockout mouse models we validate that MYC RT originate from these progenitor cells. We uncover an epigenetic imbalance in MYC tumors compared to PGCs being sustained by epigenetically-driven subpopulations. Importantly, treatments with the DNA demethylating agent decitabine successfully impair tumor growth in vitro and in vivo. In summary, our work sheds light on the origin of RT and supports the clinical relevance of DNA methyltransferase inhibitors against this disease

    Phase I/II intra-patient dose escalation study of vorinostat in children with relapsed solid tumor, lymphoma, or leukemia

    Get PDF
    Background: Until today, adult and pediatric clinical trials investigating single-agent or combinatorial HDAC inhibitors including vorinostat in solid tumors have largely failed to demonstrate efficacy. These results may in part be explained by data from preclinical models showing significant activity only at higher concentrations compared to those achieved with current dosing regimens. In the current pediatric trial, we applied an intra-patient dose escalation design. The purpose of this trial was to determine a safe dose recommendation (SDR) of single-agent vorinostat for intra-patient dose escalation, pharmacokinetic analyses (PK), and activity evaluation in children (3-18 years) with relapsed or therapy-refractory malignancies. Results: A phase I intra-patient dose (de)escalation was performed until individual maximum tolerated dose (MTD). The starting dose was 180 mg/m(2)/day with weekly dose escalations of 50 mg/m(2) until DLT/maximum dose. After MTD determination, patients seamlessly continued in phase II with disease assessments every 3 months. PK and plasma cytokine profiles were determined. Fifty of 52 patients received treatment. n = 27/50 (54%) completed the intra-patient (de)escalation and entered phase II. An SDR of 130 mg/m(2)/day was determined (maximum, 580 mg/m(2)/day). n = 46/50 (92%) patients experienced treatment-related AEs which were mostly reversible and included thrombocytopenia, fatigue, nausea, diarrhea, anemia, and vomiting. n = 6/50 (12%) had treatment-related SAEs. No treatment-related deaths occurred. Higher dose levels resulted in higher C-max. Five patients achieved prolonged disease control (> 12 months) and showed a higher C-max (> 270 ng/mL) and MTDs. Best overall response (combining PR and SD, no CR observed) rate in phase II was 6/27 (22%) with a median PFS and OS of 5.3 and 22.4 months. Low levels of baseline cytokine expression were significantly correlated with favorable outcome. Conclusion: An SDR of 130 mg/m(2)/day for individual dose escalation was determined. Higher drug exposure was associated with responses and long-term disease stabilization with manageable toxicity. Patients with low expression of plasma cytokine levels at baseline were able to tolerate higher doses of vorinostat and benefited from treatment. Baseline cytokine profile is a promising potential predictive biomarker

    Virus-specific T cells engineered to coexpress tumor-specific receptors: Persistence and antitumor activity in individuals with neuroblastoma

    Get PDF
    Cytotoxic T lymphocytes (CTLs) directed to nonviral tumor-associated antigens do not survive long term and have limited antitumor activity in vivo, in part because such tumor cells typically lack the appropriate costimulatory molecules. We therefore engineered Epstein-Barr virus (EBV)-specific CTLs to express a chimeric antigen receptor directed to the diasialoganglioside GD2, a nonviral tumor-associated antigen expressed by human neuroblastoma cells. We reasoned that these genetically engineered lymphocytes would receive optimal costimulation after engagement of their native receptors, enhancing survival and antitumor activity mediated through their chimeric receptors. Here we show in individuals with neuroblastoma that EBV-specific CTLs expressing a chimeric GD2-specific receptor indeed survive longer than T cells activated by the CD3-specific antibody OKT3 and expressing the same chimeric receptor but lacking virus specificity. Infusion of these genetically modified cells seemed safe and was associated with tumor regression or necrosis in half of the subjects tested. Hence, virus-specific CTLs can be modified to function as tumor-directed effector cells

    HDAC Inhibition Decreases the Expression of EGFR in Colorectal Cancer Cells

    Get PDF
    Epidermal growth factor receptor (EGFR), a receptor tyrosine kinase which promotes cell proliferation and survival, is abnormally overexpressed in numerous tumors of epithelial origin, including colorectal cancer (CRC). EGFR monoclonal antibodies have been shown to increase the median survival and are approved for the treatment of colorectal cancer. Histone deacetylases (HDACs), frequently overexpressed in colorectal cancer and several malignancies, are another attractive targets for cancer therapy. Several inhibitors of HDACs (HDACi) are developed and exhibit powerful antitumor abilities. In this study, human colorectal cancer cells treated with HDACi exhibited reduced EGFR expression, thereby disturbed EGF-induced ERK and Akt phosphorylation. HDACi also decreased the expression of SGLT1, an active glucose transporter found to be stabilized by EGFR, and suppressed the glucose uptake of cancer cells. HDACi suppressed the transcription of EGFR and class I HDACs were proved to be involved in this event. Chromatin immunoprecipitation analysis showed that HDACi caused the dissociation of SP1, HDAC3 and CBP from EGFR promoter. Our data suggested that HDACi could serve as a single agent to block both EGFR and HDAC, and may bring more benefits to the development of CRC therapy

    The First European Interdisciplinary Ewing Sarcoma Research Summit

    Get PDF
    The European Network for Cancer Research in Children and Adolescents (ENCCA) provides an interaction platform for stakeholders in research and care of children with cancer. Among ENCCA objectives is the establishment of biology-based prioritization mechanisms for the selection of innovative targets, drugs, and prognostic markers for validation in clinical trials. Specifically for sarcomas, there is a burning need for novel treatment options, since current chemotherapeutic treatment protocols have met their limits. This is most obvious for metastatic Ewing sarcoma (ES), where long term survival rates are still below 20%. Despite significant progress in our understanding of ES biology, clinical translation of promising laboratory results has not yet taken place due to fragmentation of research and lack of an institutionalized discussion forum. To fill this gap, ENCCA assembled 30 European expert scientists and five North American opinion leaders in December 2011 to exchange thoughts and discuss the state of the art in ES research and latest results from the bench, and to propose biological studies and novel promising therapeutics for the upcoming European EWING2008 and EWING2012 clinical trials
    corecore