1,162 research outputs found

    Evolution of magnetic fields and energetics of flares in active region 8210

    Get PDF
    To better understand eruptive events in the solar corona, we combine sequences of multi-wavelength observations and modelling of the coronal magnetic field of NOAA AR 8210, a highly flare-productive active region. From the photosphere to the corona, the observations give us information about the motion of magnetic elements (photospheric magnetograms), the location of flares (e.g., Hα\alpha, EUV or soft X-ray brightenings), and the type of events (Hα\alpha blueshift events). Assuming that the evolution of the coronal magnetic field above an active region can be described by successive equilibria, we follow in time the magnetic changes of the 3D nonlinear force-free (nlff) fields reconstructed from a time series of photospheric vector magnetograms. We apply this method to AR 8210 observed on May 1, 1998 between 17:00 UT and 21:40 UT. We identify two types of horizontal photospheric motions that can drive an eruption: a clockwise rotation of the sunspot, and a fast motion of an emerging polarity. The reconstructed nlff coronal fields give us a scenario of the confined flares observed in AR 8210: the slow sunspot rotation enables the occurence of flare by a reconnection process close to a separatrix surface whereas the fast motion is associated with small-scale reconnections but no detectable flaring activity. We also study the injection rates of magnetic energy, Poynting flux and relative magnetic helicity through the photosphere and into the corona. The injection of magnetic energy by transverse photospheric motions is found to be correlated with the storage of energy in the corona and then the release by flaring activity. The magnetic helicity derived from the magnetic field and the vector potential of the nlff configuration is computed in the coronal volume. The magnetic helicity evolution shows that AR 8210 is dominated by the mutual helicity between the closed and potential fields and not by the self helicity of the closed field which characterizes the twist of confined flux bundles. We conclude that for AR 8210 the complex topology is a more important factor than the twist in the eruption process

    A new view of quiet-Sun topology from Hinode/SOT

    Get PDF
    Context. With the recent launch of the Hinode satellite our view of the nature and evolution of quiet-Sun regions has been improved. In light of the new high resolution observations, we revisit the study of the quiet Sun's topological nature. Aims. Topology is a tool to explain the complexity of the magnetic field, the occurrence of reconnection processes, and the heating of the corona. This Letter aims to give new insights to these different topics. Methods. Using a high-resolution Hinode/SOT observation of the line-of-sight magnetic field on the photosphere, we calculate the three dimensional magnetic field in the region above assuming a potential field. From the 3D field, we determine the existence of null points in the magnetic configuration. Results. From this model of a continuous field, we find that the distribution of null points with height is significantly different from that reported in previous studies. In particular, the null points are mainly located above the bottom boundary layer in the photosphere (54%) and in the chromosphere (44%) with only a few null points in the corona (2%). The density of null points (expressed as the ratio of the number of null points to the number of photospheric magnetic fragments) in the solar atmosphere is estimated to be between 3% and 8% depending on the method used to identify the number of magnetic fragments in the observed photosphere. Conclusions. This study reveals that the heating of the corona by magnetic reconnection at coronal null points is unlikely. Our findings do not rule out the heating of the corona at other topological features. We also report the topological complexity of the chromosphere as strongly suggested by recent observations from Hinode/SOT

    A cost-efficient biogeochemical model for estuaries: a case-study of a funnel-shaped system

    Get PDF
    The hydrodynamics exerts an important influence on the biogeochemical functioning of estuarine systems. Comparative studies have long recognized this tight coupling and, for instance, have attempted to correlate key estuarine biogeochemical processes to simple hydrodynamic properties, such as the residence time or the tidal forcing. Yet, these correlations fail to resolve the estuarine spatio-temporal variability and do not provide powerful means to disentangle the complex interplay of multiple reaction and transport processes. In this context, reaction-transport models (RTMs) are useful tools to resolve the variability inherent to the estuarine environment. They ideally complement field observations, because their integrative power provides the required extrapolation means for a system-scale analysis over the entire spectrum of changing forcing conditions, including the long-term response to land-use and climate changes. However, RTM simulations are associated with high computational costs, especially when the biogeochemical dynamics are to be resolved on a regional or global scale. Furthermore, specific data requirements, such as boundary conditions or bathymetric and geometric information may limit their applicability.Here, a generic one-dimensional RTM approach which relies on idealized geometries to support the estuarine physics is used to quantify the biogeochemical dynamics. The model is cost-efficient and requires only a limited number of readily available input data. The approach is applied to a case-study of a funnel-shaped estuary (The Scheldt, BE/NL) and is tested by comparing integrative measures of the estuarine biogeochemical functioning (e.g. Net Ecosystem Metabolism, integrated CO2 fluxes) with those derived from observations (Frankignoulle et al., 1996, 1998) and highly-resolved model simulations (Vanderborght et al., 2002; Arndt et al., 2009). The method provides a robust quantitative tool to carry sensitivity and uncertainty analyses and to investigate the estuarine biogeochemistry at the regional scale

    Magnetic Anisotropy of Co2+ as Signature of Intrinsic Ferromagnetism in ZnO:Co

    Full text link
    We report on the magnetic properties of thoroughly characterized Zn1-xCoxO epitaxial thin films, with low Co concentration, x=0.003-0.005. Magnetic and EPR measurements, combined with crystal field theory, reveal that isolated Co2+ ions in ZnO possess a strong single ion anisotropy which leads to an "easy plane" ferromagnetic state when the ferromagnetic Co-Co interaction is considered. We suggest that the peculiarities of the magnetization process of this state can be viewed as a signature of intrinsic ferromagnetism in ZnO:Co materials.Comment: 4 pages, 4 figure

    Filament Compliance Influences Cooperative Activation of Thin Filaments and the Dynamics of Force Production in Skeletal Muscle

    Get PDF
    Striated muscle contraction is a highly cooperative process initiated by Ca2+ binding to the troponin complex, which leads to tropomyosin movement and myosin cross-bridge (XB) formation along thin filaments. Experimental and computational studies suggest skeletal muscle fiber activation is greatly augmented by cooperative interactions between neighboring thin filament regulatory units (RU-RU cooperativity; 1 RU = 7 actin monomers+1 troponin complex+1 tropomyosin molecule). XB binding can also amplify thin filament activation through interactions with RUs (XB-RU cooperativity). Because these interactions occur with a temporal order, they can be considered kinetic forms of cooperativity. Our previous spatially-explicit models illustrated that mechanical forms of cooperativity also exist, arising from XB-induced XB binding (XB-XB cooperativity). These mechanical and kinetic forms of cooperativity are likely coordinated during muscle contraction, but the relative contribution from each of these mechanisms is difficult to separate experimentally. To investigate these contributions we built a multi-filament model of the half sarcomere, allowing RU activation kinetics to vary with the state of neighboring RUs or XBs. Simulations suggest Ca2+ binding to troponin activates a thin filament distance spanning 9 to 11 actins and coupled RU-RU interactions dominate the cooperative force response in skeletal muscle, consistent with measurements from rabbit psoas fibers. XB binding was critical for stabilizing thin filament activation, particularly at submaximal Ca2+ levels, even though XB-RU cooperativity amplified force less than RU-RU cooperativity. Similar to previous studies, XB-XB cooperativity scaled inversely with lattice stiffness, leading to slower rates of force development as stiffness decreased. Including RU-RU and XB-RU cooperativity in this model resulted in the novel prediction that the force-[Ca2+] relationship can vary due to filament and XB compliance. Simulations also suggest kinetic forms of cooperativity occur rapidly and dominate early to get activation, while mechanical forms of cooperativity act more slowly, augmenting XB binding as force continues to develop

    Sarcomere Lattice Geometry Influences Cooperative Myosin Binding in Muscle

    Get PDF
    In muscle, force emerges from myosin binding with actin (forming a cross-bridge). This actomyosin binding depends upon myofilament geometry, kinetics of thin-filament Ca2+ activation, and kinetics of cross-bridge cycling. Binding occurs within a compliant network of protein filaments where there is mechanical coupling between myosins along the thick-filament backbone and between actin monomers along the thin filament. Such mechanical coupling precludes using ordinary differential equation models when examining the effects of lattice geometry, kinetics, or compliance on force production. This study uses two stochastically driven, spatially explicit models to predict levels of cross-bridge binding, force, thin-filament Ca2+ activation, and ATP utilization. One model incorporates the 2-to-1 ratio of thin to thick filaments of vertebrate striated muscle (multi-filament model), while the other comprises only one thick and one thin filament (two-filament model). Simulations comparing these models show that the multi-filament predictions of force, fractional cross-bridge binding, and cross-bridge turnover are more consistent with published experimental values. Furthermore, the values predicted by the multi-filament model are greater than those values predicted by the two-filament model. These increases are larger than the relative increase of potential inter-filament interactions in the multi-filament model versus the two-filament model. This amplification of coordinated cross-bridge binding and cycling indicates a mechanism of cooperativity that depends on sarcomere lattice geometry, specifically the ratio and arrangement of myofilaments

    Multiscale modeling of twitch contractions in cardiac trabeculae

    Get PDF
    © 2021 Mijailovich et al. Understanding the dynamics of a cardiac muscle twitch contraction is complex because it requires a detailed understanding of the kinetic processes of the Ca2+ transient, thin-filament activation, and the myosin-actin cross-bridge chemomechanical cycle. Each of these steps has been well defined individually, but understanding how all three of the processes operate in combination is a far more complex problem. Computational modeling has the potential to provide detailed insight into each of these processes, how the dynamics of each process affect the complexity of contractile behavior, and how perturbations such as mutations in sarcomere proteins affect the complex interactions of all of these processes. The mechanisms involved in relaxation of tension during a cardiac twitch have been particularly difficult to discern due to nonhomogeneous sarcomere lengthening during relaxation. Here we use the multiscale MUSICO platform to model rat trabecular twitches. Validation of computational models is dependent on being able to simulate different experimental datasets, but there has been a paucity of data that can provide all of the required parameters in a single experiment, such as simultaneous measurements of force, intracellular Ca2+ transients, and sarcomere length dynamics. In this study, we used data from different studies collected under similar experimental conditions to provide information for all the required parameters. Our simulations established that twitches either in an isometric sarcomere or in fixed-length, multiple-sarcomere trabeculae replicate the experimental observations if models incorporate a length-tension relationship for the nonlinear series elasticity of muscle preparations and a scheme for thick-filament regulation. The thick-filament regulation assumes an off state in which myosin heads are parked onto the thick-filament backbone and are unable to interact with actin, a state analogous to the super-relaxed state. Including these two mechanisms provided simulations that accurately predict twitch contractions over a range of different conditions

    KiloHertz Bandwidth, Dual-Stage Haptic Device Lets You Touch Brownian Motion

    Get PDF
    This paper describes a haptic interface that has a uniform response over the entire human tactile frequency range. Structural mechanics makes it very difficult to implement articulated mechanical systems that can transmit high frequency signals. Here, we separated the frequency range into two frequency bands. The lower band is within the first structural mode of the corresponding haptic device while the higher one can be transmitted accurately by a fast actuator operating from conservation of momentum, that is, without reaction forces to the ground. To couple the two systems, we adopted a channel separation approach akin to that employed in the design of acoustic reproduction systems. The two channels are recombined at the tip of the device to give a uniform frequency response from DC to one kHz. In terms of mechanical design, the high-frequency transducer was embedded inside the tip of the main stage so that during operation, the human operator has only to interact with a single finger interface. In order to exemplify the type of application that would benefit from this kind of interface, we applied it to the haptic exploration with microscopic scales objects which are known to behave with very fast dynamics. The novel haptic interface was bilaterally coupled with a micromanipulation platform to demonstrate its capabilities. Operators could feel interaction forces arising from contact as well as those resulting from Brownian motion and could manoeuvre a micro bead in the absence of vision

    Modelling estuarine biogeochemical dynamics: from the local to the global scale

    Get PDF
    Estuaries act as strong carbon and nutrient filters and are relevant contributors to the atmospheric CO2 budget. They thus play an important, yet poorly constrained, role for global biogeochemical cycles and climate. This manuscript reviews recent developments in the modelling of estuarine biogeochemical dynamics. The first part provides an overview of the dominant physical and biogeochemical processes that control the transformations and fluxes of carbon and nutrients along the estuarine gradient. It highlights the tight links between estuarine geometry, hydrodynamics and scalar transport, as well as the role of transient and nonlinear dynamics. The most important biogeochemical processes are then discussed in the context of key biogeochemical indicators such as the net ecosystem metabolism (NEM), air–water CO2 fluxes, nutrient-filtering capacities and element budgets. In the second part of the paper, we illustrate, on the basis of local estuarine modelling studies, the power of reaction-transport models (RTMs) in understanding and quantifying estuarine biogeochemical dynamics. We show how a combination of RTM and high-resolution data can help disentangle the complex process interplay, which underlies the estuarine NEM, carbon and nutrient fluxes, and how such approaches can provide integrated assessments of the air–water CO2 fluxes along river–estuary–coastal zone continua. In addition, trends in estuarine biogeochemical dynamics across estuarine geometries and environmental scenario are explored, and the results are discussed in the context of improving the modelling of estuarine carbon and CO2 dynamics at regional and global scales

    Report: The 62nd Annual Caddo Conference and 27th Annual East Texas Archeological Conference, Tyler, Texas, February 28 and 29, 2020

    Get PDF
    The 62nd Caddo Conference and 27th East Texas Archeological Conference was held at the University Center on the campus of the University of Texas at Tyler on February 28 and 29, 2020. The conference was dedicated to the rebuilding of public facilities at Caddo Mounds State Historic Site. These facilities had been destroyed by a tornado in 2019. The conference organizers were Thomas Guderjan, Colleen Hanratty, Cory Sills, Christy Simmons (University of Texas at Tyler), Keith Eppich (Tyler Junior College), Anthony Souther (Caddo Mounds State Historic Site), Amanda Regnier (Oklahoma Archeological Survey), Mark Walters (Texas Historical Commission Steward). Sponsors included The Center for Social Science Research and Department of Social Sciences, University of Texas at Tyler, Humanities Texas, Kevin Stingley, Arkansas Archeological Survey, Beta Analytic, Inc., Friends of Northeast Texas Archeology, East Texas Archeological Society, Maya Research Program, Tejas Archeology, Tyler Junior College, Gregg County Historical Museum, the American Indian Heritage Day of Texas organization, and the Caddo Nation. Before the formal program began, a preconference gathering was held at ETX Brewing Company at 221 S Broadway Avenue in Tyler on Thursday evening, February 27th. Approximately 250 people participated in the joint conferences
    • …
    corecore