583 research outputs found

    Renormalization of the quasiparticle hopping integrals by spin interactions in layered copper oxides

    Full text link
    Holes doped within the square CuO2 network specific to the cuprate superconducting materials have oxygen 2p character. We investigate the basic properties of such oxygen holes by wavefunction-based quantum chemical calculations on large embedded clusters. We find that a 2p hole induces ferromagnetic correlations among the nearest-neighbor Cu 3d spins. When moving through the antiferromagnetic background the hole must bring along this spin polarization cloud at nearby Cu sites, which gives rise to a substantial reduction of the effective hopping parameters. Such interactions can explain the relatively low values inferred for the effective hoppings by fitting the angle-resolved photoemission data. The effect of the background antiferromagnetic couplings of renormalizing the effective nearest-neighbor hopping is also confirmed by density-matrix renormalization-group model Hamiltonian calculations for chains and ladders of CuO4 plaquettes

    Prediction of low birth weight from other anthropometric parameters in Nnewi, south eastern Nigeria

    Get PDF
    Background: Low birth weight is a global problem but presents a major burden on the neonatal services in developing countries such as Nigeria, and brings to bear a greater strain on the meagre resources available for health care delivery and family financing. In a resourceconstrained setting as ours, proper weighing of all newborn infants and medical surveillance of low birth weight infants, although highly desirable, are often not achieved due to unavailability of suitable, functional weighing scales. There are serial cut-off points for the various anthropometric indices for the normal birth weight babies below which any baby is termed low birth weight. This study assessed the predictive values of anthropometric measurements in the detection of low birth weight newborn babies and also determined the local specific cut-off points for these measurements in Nnewi, Southeast Nigeria.Methods: This was a crosssectional study in which length, occipitofrontal circumference, mid-arm circumference and maximum thigh circumference of 428 singleton babies were ascertained within 24 hours of delivery. Data were analysed using the Statistical Package for Social Sciences (SPSS) software. Correlation and linear regression analyses were done to examine the linear relationship between the predictors and birth weight. The sensitivity, specificity and predictive values were calculated at serial cut–off points and the points of best discrimination determined.Results: The low birth weight prevalence was 15.2%. Maximum thigh circumference attained the highest correlation with birth weight (r = 0.904), greatest coefficient of determination (r2=0.817), and least measure of dispersion around the actual birth weight. Thus maximum thigh circumference, which has a cut-off point of 16.75cm, was the best predictor of low birth weight, with 98.5% sensitivity, 92.3% specificity and diagnostic accuracy of 93.2% (P<0.001).Conclusion: Routine measurements of maximum thigh circumference in resource-poor countries is an effective proxy for weight at birth in prenatal assessments and epidemiologic surveys.Key words: anthropometric parameters,low birth weight, newborn, Nigeri

    Complete Hydatidiform Mole Coexisting with a Live Fetus

    Get PDF
    Hydatidiform mole co-existing with a normal fetus is very rare. We report a case of a 36 year old woman Para 4+0 who presented with amenorrhoea of twenty four weeks duration, vaginal bleeding , abdominal pain and  pre-eclampsia. Ultrasound examination revealed a hydatidiform mole  coexisting with a normal living fetus. The patient underwent a caesarean section at twenty eight weeks for maternal distress due to unbearable   abdominal pain. The baby died after seven days. Post operatively she had an eclamptic fit and developed oliguria and persistent trophoblastic disease which were all successfully treated.Key words: hydatidiform mole, living fetus, perisitent trophoblastic disease

    Metallic properties of magnesium point contacts

    Get PDF
    We present an experimental and theoretical study of the conductance and stability of Mg atomic-sized contacts. Using Mechanically Controllable Break Junctions (MCBJ), we have observed that the room temperature conductance histograms exhibit a series of peaks, which suggests the existence of a shell effect. Its periodicity, however, cannot be simply explained in terms of either an atomic or electronic shell effect. We have also found that at room temperature, contacts of the diameter of a single atom are absent. A possible interpretation could be the occurrence of a metal-to-insulator transition as the contact radius is reduced, in analogy with what it is known in the context of Mg clusters. However, our first principle calculations show that while an infinite linear chain can be insulating, Mg wires with larger atomic coordinations, as in realistic atomic contacts, are alwaysmetallic. Finally, at liquid helium temperature our measurements show that the conductance histogram is dominated by a pronounced peak at the quantum of conductance. This is in good agreement with our calculations based on a tight-binding model that indicate that the conductance of a Mg one-atom contact is dominated by a single fully open conduction channel.Comment: 14 pages, 5 figure

    Hydric behaviour and gas exchange in different grapevine varieties (Vitis vinifera L.) from the Maule Valley (Chile)

    Get PDF
    In the near future, stomatal behaviour will be crucial to counteract conditions arising from climate change.  Grapevine varieties are classified as either isohydric or anisohydric, depending on the sensitivity of stomatato water deficit and on their water potential homeostasis. However, the great variability observed in different studies indicates that a continuum exists in the range of stomatal sensitivity to water stress. Thus, more knowledge about the hydric behaviour and the gas exchange of isohydric and anisohydric grapevine varieties under different water conditions could lead to the development of irrigation strategies oriented at improving water-use efficiency, yield and berry composition. In this study, research was conducted in order to characterise the stomatal regulation of four different Vitis vinifera L. varieties, namely Pinot noir, Sauvignon blanc, Chardonnay and Merlot, according to soil water status. Measurements of leaf gas exchange, together with measurements of stem water potential (Ψs) and leaf water potential (Ψl), were taken during two seasons. Under conditions of water stress, Chardonnay and Merlot reached a minimum Ψs of -1.67 and -1.68 MPa respectively, and higher levels of water-use efficiency (AN/gs), of 62.3 and 69.7 μmol CO2/mol H2O respectively. In Sauvignon blanc and Pinot noir, the minimum Ψs was -1.26 and -1.40 MParespectively, with lower levels of AN/gs (53.1 and 50.5 μmol CO2/mol H2O, respectively). Under conditions of water stress (Ψl < -0.9 MPa and Ψs < -0.6 MPa), all varieties had a significantly increased AN/gs1, despitea significant reduction in gas exchange. Therefore, the hydric behaviour and gas exchange observed in this study suggest that Chardonnay and Merlot could be characterised as anisohydric varieties, as they present less sensitive stomatal control, while Pinot noir can be classified as a near-anisohydric variety and Sauvignon blanc as an isohydric variety. New investigations should consider other characteristics of the varieties to classify them better

    Submodule power losses balancing algorithms for the modular multilevel converter

    Get PDF
    Tolerance and component aging can cause signif¬icant differences in the capacitance values of the submodules (SMs) in a modular multilevel converter (MMC). Depending on the modulation technique, capacitance mismatches may produce uneven switching transitions of the SMs, hence imbalances in the power losses that can lead to reliability problems. In this paper, a new algorithm that helps to achieve evenly distributed switching and conduction losses within the converter SMs is presented. The proposed algorithm is based on a modification of the common voltage balancing algorithms, balancing a weighted function of voltage and losses. Even distribution of power losses is achieved at the cost of slightly increasing the capacitor voltage ripples. The effectiveness of the strategy has been demonstrated by simulation results of a high-power grid-connected MMC

    Tug-of-war between corrugation and binding energy: revealing the formation of multiple moiré patterns on a strongly interacting graphene-metal system

    Full text link
    The formation of multidomain epitaxial graphene on Rh(111) under ultra-high vacuum (UHV) conditions has been characterized by scanning tunnelling microscopy (STM) measurements and density functional theory (DFT) calculations. At variance with the accepted view for strongly interacting graphene-metal systems, we clearly demonstrate the formation of different rotational domains leading to multiple moiré structures with a wide distribution of surface periodicities. Experiments reveal a correlation between the STM apparent corrugation and the lattice parameter of the moiré unit cell, with corrugations of just 30-40 pm for the smallest moirés. DFT calculations for a relevant selection of these moiré patterns show much larger height differences and a non-monotonic behaviour with the moiré size. Simulations based on non-equilibrium Green's function (NEGF) methods reproduce quantitatively the experimental trend and provide a detailed understanding of the interplay between electronic and geometric contributions in the STM contrast of graphene systems. Our study sheds light on the subtle energy balance among strain, corrugation and binding that drives the formation of the moiré patterns in all graphene/metal systems and suggests an explanation for the success of an effective model only based on the lattice mismatch. Although low values of the strain energy are a necessary condition, it is the ability of graphene to corrugate in order to maximize the areas of favourable graphene-metal interactions that finally selects the stable configurationsWe acknowledge financial support from Spanish grants MAT2013-41636-P, MAT2011-23627, MAT2011-26534, CSD2010-00024 (MINECO, Spain) and S2009/MAT-1467 (CAM, Spain). A.J.M.G. was supported by a Marie Curie action under the Seventh Framework Programme. P.P. was supported by the Ramón y Cajal Progra

    Extended Functionalities of Photovoltaic Systems with Flexible Power Point Tracking:Recent Advances

    Get PDF
    The power system is experiencing an ever-increasing integration of photovoltaic power plants (PVPPs), which leads demand on the power system operators to force new requirements to sustain with quality and reliability of the grid. Subsequently, a significant quantity of flexible power point tracking (FPPT) algorithms have been proposed in the literature to enhance functionalities PVPPs. The intention of FPPT algorithms is to regulate the PV power to a specific value imposed by the grid codes and operational conditions. This will inevitably interfere the maximum power point tracking (MPPT) operation of PV systems. Nevertheless, the FPPT control makes PVPPs much more grid-friendly. The main contribution of this paper is to comprehensively compare available FPPT algorithms in the literature from different aspects and provide a benchmark for researchers and engineers to select suitable FPPT algorithms for specific applications. A classification and short description of them are provided. The dynamic performances of the investigated algorithms are compared with experimental tests on a scaled-down prototype. Directions for future studies in this area are also presented.MOE (Min. of Education, S’pore)Accepted versio

    Grid-Connected Energy Storage Systems: State-of-the-Art and Emerging Technologies

    Get PDF
    High penetration of renewable energy resources in the power system results in various new challenges for power system operators. One of the promising solutions to sustain the quality and reliability of the power system is the integration of energy storage systems (ESSs). This article investigates the current and emerging trends and technologies for grid-connected ESSs. Different technologies of ESSs categorized as mechanical, electrical, electrochemical, chemical, and thermal are briefly explained. Especially, a detailed review of battery ESSs (BESSs) is provided as they are attracting much attention owing, in part, to the ongoing electrification of transportation. Then, the services that grid-connected ESSs provide to the grid are discussed. Grid connection of the BESSs requires power electronic converters. Therefore, a survey of popular power converter topologies, including transformer-based, transformerless with distributed or common dc-link, and hybrid systems, along with some discussions for implementing advanced grid support functionalities in the BESS control, is presented. Furthermore, the requirements of new standards and grid codes for grid-connected BESSs are reviewed for several countries around the globe. Finally, emerging technologies, including flexible power control of photovoltaic systems, hydrogen, and second-life batteries from electric vehicles, are discussed in this article.This work was supported in part by the Office of Naval Research Global under Grant N62909-19-1-2081, in part by the National Research Foundation of Singapore Investigatorship under Award NRFI2017-08, and in part by the I2001E0069 Industrial Alignment Funding. (Corresponding author: Josep Pou.
    • …
    corecore