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Abstract. We present an experimental and theoretical study of the conductance
and stability of Mg atomic-sized contacts. Using mechanically controllable
break junctions (MCBJ), we observed that the room temperature conductance
histograms exhibit a series of peaks, which suggests the existence of a shell
effect. Its periodicity, however, cannot be simply explained in terms of either
an atomic or electronic shell effect. We also found that at room temperature,
contacts of the diameter of a single atom are absent. A possible interpretation
could be the occurrence of a metal-to-insulator transition as the contact radius
is reduced, in analogy with what is known in the context of Mg clusters.
However, our first principles calculations show that while an infinite linear chain
can be insulating, Mg wires with larger atomic coordinations, as in realistic
atomic contacts, are always metallic. Finally, at liquid helium temperature,
our measurements show that the conductance histogram is dominated by a
pronounced peak at the quantum of conductance. This is in good agreement
with our calculations based on a tight-binding model that indicated that the
conductance of a Mg one-atom contact is dominated by a single fully open
conduction channel.
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1. Introduction

The understanding of conductance at the very small scale of a single atom has advanced
greatly over the last decade due to a joint effort from both experiment and theory [1]. In
this regime, the total conductance, G, is described by the Landauer formula: G = G0

∑N
i=1 τi ,

where G0 = 2e2/h is the quantum of conductance and τi is the value of transmission for the
i th electronic mode (channel). For many metals, the conductance of a one-atom contact does
not match the value of a single quantum of conductance. Values in excess of 2e2/h, found
for transition metal contacts, indicate that the conductance has to be determined by multiple
channels. A pivotal contribution to the understanding of these single-atom contacts was given
by Scheer et al [2]. They showed that the maximum number of modes to be considered was
limited by the number of valence orbitals of the central atom [3].

In the case of s1 metals, such as the alkali and noble metals, the conduction is given by a
single electronic mode. Experimentally, the transmission of this ‘channel’ is found to be close
to one, resulting in a conductance close to 2e2/h or a resistance of 13 k�. For sp metals, the
total conduction is governed by three channels, but this does not lead to a conductance of 3 G0,
since the electronic states in general have a transmission τ < 1. For the transition metals, the
number of conduction channels even increases to five, due to the d orbitals.

When we shift our attention to Mg, however, it is not so easy to predict what the
conductance through the single atom will be. An isolated atom of this s2 metal has the s-shell
fully filled, but the p-shell is still empty. It is therefore not straightforward to predict which
electronic states are of importance to the conductance of a single-atom contact. A comparable
electronic structure can be found in Zn, where the 4s-shell is completely filled while the 4p-shell
is empty. Häfner et al [4] have shown that the conductance of a single-atom contact in this case
was between 0.8 and 1.0 G0, where the transmission was largely given by a single channel.

The fact that bulk Mg is a metal results from the hybridization of the 3s and the 3p
bands that originates from the large coordination number (12 in an hcp structure). However,
the situation might be different when this coordination is reduced. Indeed, it is well known that
Mg clusters exhibit unusual properties (see [5] and references therein). In particular, it has been
shown that the nonmetallic-to-metallic transition in Mg clusters is non-monotonic and clearly
slower than, for instance, that in alkali metals [6]. This is due to the dramatic change in the
electronic structure of Mg with the number of interacting atoms. In the extreme case of a dimer,
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the bonding is due to weak van der Waals interactions. In the thinning of an atomic contact there
is a progressive reduction of the coordination of the atoms and, with it, the hybridization. In this
sense, the first question we want to address in this work is whether this reduction is enough to
induce a metal-to-insulator transition for small Mg contacts.

Besides the crossover from insulating to metallic behaviour, cluster experiments also
demonstrated a shell structure [6]. One speaks of a shell structure if the mass spectrum shows a
periodicity as a function of the radius [7]. The first observation of a shell structure in magnesium
clusters was found to be due to the closing of facets and the crystalline arrangement [8]. The
hexagonally close-packed lattice leads to the periodic occurrence of highly stable icosahedrons.
Later experiments performed with magnesium in supercold helium droplets showed shell
structure due to the delocalized electrons that display electronic level bunching [9].

Analogies to cluster shell structures were already found in quantum point contacts of
alkali metals [10] and subsequent work showed that these are not limited to this chemical
group [11, 12]. For metallic contacts to demonstrate shell structures, the atoms require sufficient
thermal energy in order to find the local minima in energy. For sodium, the necessary
temperature for observing the shell effects was found to be around 80 K [13]. Since magnesium
has a much higher melting temperature (922 K versus 371 K for Na), one expects the necessary
temperature in this case to be above 200 K. The second question we want to address therefore is
whether magnesium point contacts demonstrate shell structures at room temperature. The fact
that small clusters are insulating, while small contacts have their electronic structure influenced
by the leads, makes the comparison between the two manifestations of the shell structures all
the more interesting.

This paper is organized as follows. In section 2, we describe the experimental technique
used in this work to study the mechanical and transport properties of Mg atomic-sized contacts.
Then, in section 3, we discuss our observations at room temperature, which suggest the existence
of a shell effect. Section 4 is devoted to a theoretical analysis of Mg nanocontacts. In particular,
we present first principles calculations of the electronic structure of Mg infinite wires of different
thicknesses as well as conductance calculations for Mg one-atom contacts based on a tight-
binding model. In section 5, we discuss our experimental results for the conductance of Mg point
contacts at liquid helium temperature. Finally, we summarize, in section 6, the main conclusions
of our work.

2. Experimental technique

In order to investigate Mg contacts experimentally, we have used mechanically controllable
break junctions (MCBJ) at both room temperature and liquid helium temperature. We start with
a magnesium wire (purity better than 99.9%) of 125 µm diameter and about 15 mm length and
give this wire a small incision in the middle.

For the low-temperature measurements, the wire is glued on top of an insulating Kapton
layer, which covers a phosphor bronze bendable substrate. The glue (Stycast Epoxy 2850FT
with curing agent 24LV) is positioned on either side and is as close to the incision as possible.
The bendable substrate is clamped in a three-point bending configuration inside a vacuum
pot that is brought to a pressure <10−5 mbar. The pumping is done by an oil-free diaphragm
pump in combination with a turbo molecular pump to reduce possible contamination, especially
by hydrogen. This is important, considering the strong chemical affinity of magnesium for
hydrogen [14]. After pumping, the vacuum pot is submerged in liquid helium, cooling the
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sample down to a temperature close to 4.2 K. An important benefit of this technique is that
it maintains the sample in a cryogenic vacuum and minimizes the possibility of contamination.
Using a mechanical axis for the coarse movement, the wire is broken at the incision. In this
way, the two electrodes are formed by freshly exposed surfaces, which is critical for the study of
reactive materials such as magnesium. A stacked piezo element is used for the fine adjustments
of the contact diameter during the experiment. By relaxing the bending of the substrate, the two
clean surfaces can be brought into contact again, adjusting the size of the contact to the level of
single atoms.

The setup we have used to study magnesium at room temperature is comparable to the one
used at low temperatures [15]. Instead of one substrate, we now use two, fixed inline with a
small gap as separation. In this way, both the substrates can act as separate electrodes, avoiding
the need for insulation of the wire. The magnesium wire is stretched across the gap at the top and
fixed by small clamps on either side. One thus avoids the use of glue, which can cause problems
in the combination with ultrahigh vacuum (UHV). The piezo is positioned below the gap and
presses the two substrates upward and outward, effectively breaking the wire. The ratio between
the upward movement of the piezo and the outward stretching of the sample wire (commonly
called the reduction ratio) is comparable to the low-temperature configuration, resulting in a
similar stability. The sample holder with the wire is mounted on a stainless steel insert, which is
inserted from the top into the UHV chamber. The chamber is pumped down to 10−7 mbar with
a turbo pump; after this, it is baked at 450 K. In combination with an ion pump, the pressure can
be brought down to 1 × 10−10 mbar. During the measurement, however, the turbo pump is shut
down to minimize the mechanical vibrations coupling to the sample. The base pressure during
the experiments is 4 × 10−10 mbar.

The level of contamination in both these setups is too low to have an influence on the
results. This can be concluded from the data being reproducible during a period of several
days. Since the sample configuration is comparable in both setups, their difference is limited to
the temperature. The surface diffusion of atoms at low temperatures is frozen out, forcing the
contact to the nearest low-energy state in configuration space. At room temperature, however,
thermal diffusion of the atoms allows the contact to probe a wider range of configurations.
Subtle energy differences such as the one caused by the shell effect are then probed more
effectively.

3. Room temperature results

The evolution of conductance when breaking the wire at room temperature has a characteristic
that can be seen in the example of figure 1(a). We see a step-like lowering of the conductance
towards zero with stretching of the wire. Relatively stable intervals or plateaus occur when
the mechanical tension on the contact gradually builds up. When this tension is released
by a mechanical reconfiguration of the contact, its diameter and conductance are reduced
stepwise [16]. The plateaus in conductance appear flat and the jumps during the mechanical
reconfigurations are large. This is an indication that some values of conductance are stabilized
when they are related to structures with a local minimum in the energy.

In order to verify that these plateaus occur at reproducible values, we use a statistical
description by means of a conductance histogram [17]. This histogram is constructed by
dividing the conductance interval of interest into equal sub-intervals or bins. For each measured
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Figure 1. (a) The conductance evolution during the stretching of a magnesium
contact at room temperature in UHV. The conductance was measured at a bias
voltage of 20 mV. (b) A conductance histogram resulting from 1.2 × 104 of
these traces. The resolution of this histogram was set to 10 bins per G0. The
conductance peaks, obtained by an automatic procedure, are indicated by arrows
at the top of the panel.

data point, we determine the corresponding bin, resulting in a probability distribution for the
conductance during breaking. An example of such a distribution or histogram for Mg is given in
figure 1(b). We varied the speed of the electrode separation between 1.0 and 5.0 × 101 nm s−1,
but this had no significant effect on the conductance histograms.

The result of figure 1 indeed shows a series of peaks at higher conductance values. The
positions of these peaks were determined automatically by a numerical procedure registering
changes in the sign of its numerical derivative. The obtained values are indicated by arrows
in the figure. These could indicate the presence of a shell structure, but in order to investigate
whether the peaks in figure 1 are indeed periodic in the radius, we need to plot the histogram
as a function of the radius, R. Since the range of conductances in this graph corresponds to the
ballistic conductance regime, we can obtain the R from G via the corrected Sharvin formula

G ≈ G0

[(
kF R

2

)2

−
kF R

2
+

1

6
+ · · ·

]
, (1)

where kF represents the Fermi wave vector [18, 19].
For the specific case of figure 1, the calculated radius for the peaks is plotted in figure 2.

The obtained data points are clearly described by two linear fits, indicating a crossover between
two shell effects with different periods [10]. For this specific histogram, the period changes from
1.6 (kF R)−1 for small contact diameters to 3.2 (kF R)−1 for larger contact diameters.

To compare these values to the periodicity expected for shell structures due to atomic
packing, one can start from a simple packing model for a close-packed hexagonal lattice and
increase the contact diameter facet by facet. One then obtains a periodicity of 2.3 (kF R)−1, which
is only slightly influenced, considering other crystal structures such as a face (body)-centred
cubic. In figure 2, this period is represented by the dotted line, which is clearly deviating from
the obtained data.
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Figure 2. Graph showing the value for kF R obtained for the conductance peaks in
figure 1. The data points are successfully described by two linear fits, indicating
a periodicity of 1.6 (kF R)−1 at smaller contact diameters and 3.2 (kF R)−1 at
bigger contact diameters. Two additional lines indicate the expected periodicity
for atomic (dotted) and electronic (dashed) shell effects as described in
the text.

Possible electronic shell structures have been studied for metallic point contacts as well.
Both calculations using jellium models [20] and nanoscale free-electron models [21] applied
to aluminium point contacts [12], give frequencies up to 1 (kF R)−1. As the frequencies for Mg
are suggested to be the same as that for Al [21], we represent this period by a dashed line
in figure 2. Since none of the lines provide a good description of the data, the shell effects
seen in the experiment are still without satisfactory explanation. One possibility is that the
contact is governed by competing effects of the atomic packing and the electronic free energy
simultaneously. Similar mixed structures were also found for Mg clusters [22].

In our experiments on the whole, more than 90% of the measured histograms for all six
samples at room temperature show a periodicity in kF R, but the observed frequencies in the total
conductance interval vary in the range of 1–3.5 (kF R)−1. In 50% of the histograms, we obtained
a value around 1.7 (kF R)−1 for lower conductance values. At higher conductance values there is
almost always a crossover to higher frequencies. The frequency at this second conductance
interval varies strongly and often there are multiple frequencies superimposed. This indeed
makes it likely that the shell effect is the result of multiple properties of the metal.

Another feature of the histogram in figure 1 that is even more remarkable is the absence of
plateaus below 5 G0. This minimal value is much higher than for all other metals studied with
this technique [11, 12, 15]. Below this threshold value, we only found a smooth exponential
decrease in conductance, typical for tunnelling behaviour. In principle, this suggests that smaller
contacts are not stable. However, from the analysis of the data, we cannot exclude that a metal-
to-insulator transition is taking place. As we explained in section 1, as the contact radius is
reduced, the overlap between the s and p states of the atoms in the constriction decreases. Such
a decrease could potentially lead to the opening of a gap in the Mg density of states (DOS). In
the next section, we present a theoretical analysis to elucidate this issue.
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Figure 3. DOS of Mg wires calculated with CASTEP [23] for (a) a linear chain
with an optimal interatomic distance of 3.125 Å and (b) an infinite wire with a
three atoms cross section. The wire is built up along the c-axis keeping the bulk
symmetry as shown in the inset. The interatomic distance that minimizes the total
energy is 3.1 Å.

4. Theory

The numerous existent theoretical results on Mg clusters (see [22] and references therein) cannot
be used to resolve the problem of whether or not a Mg point contact can become insulating. A
metal-to-insulator transition is well defined only for truly infinite systems. Thus, in order to
shed light on this problem, we have studied the stability and electronic structure of a series of
Mg infinite wires with small coordination numbers. To be precise, we have carried out density
functional theory (DFT) calculations of the structural and electronic properties of Mg wires
ranging from the smallest possible coordination, two in the case of a chain, to 6. In the insets
of figure 3, we present two examples of the configurations of the studied wires. In panel (a) one
can see a linear chain, while panel (b) shows an infinite wire with a cross section of three atoms
(coordination number is equal to 6) grown along the c-axis of an hcp bulk structure and keeping
the bulk relative positions.

For these ab initio calculations, we have used a standard implementation of DFT [24, 25]
with a plane wave basis set and ultrasoft pseudopotentials [26]. The Perdew–Burke–Ernzerhof
approach (PBE) [27] has been chosen for the exchange–correlation contribution. The
calculations were performed with the CASTEP v4.2 code [23]. The plane wave cutoff used
(375 eV) in all our calculations assures us of well-converged structural and electronic properties.
The convergence criteria for the atomic relaxations involved in the different calculations are
0.01 eV Å−1 for the mean value of the forces, 0.001 Å for the atomic positions and 10−6 eV for
the total energy. We have used a cubic supercell of four atoms for the linear chain and two atomic
layers for the wire adding a vacuum of 10 Å in the directions perpendicular to the wires. We have
optimized, by minimizing the system energy, the interatomic distances of the wires keeping the
original symmetry with a Monkhorst–Pack (MP) Ek-sampling mesh of 1 × 1 × 64 [28]. The DOS
has been calculated with a mesh of 1 × 1 × 1024.

Turning to the results, in the two systems shown in figure 3, we have found interatomic
distances (3.1 Å) slightly smaller than the bulk value (3.2 Å) in accordance with calculations
of Mg clusters [22]. In figure 3(a), we show the DOS of the linear chain for the optimized
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interatomic distance6. A small gap of 0.3 eV is observed; consequently, the linear chain does
not show metallic behaviour. However, even for this wire with the lowest coordination number,
the broadening due to the 3s–3p hybridization has nearly closed the gap. Indeed, we have found
that all the wires with larger coordination than the linear chain are metallic. The DOS of a wire
with a cross section of three atoms is shown in figure 3(b); it does not exhibit any gap. In fact,
up to five different bands cross the Fermi level. We have investigated whether the application of
some additional stress will modify these results, but we have found that even with an increase
of the interatomic distances by 10%, the wires remain metallic. So, in short, from this analysis
we do not expect the formation of insulating Mg wires in the last stages of the breaking of Mg
contacts.

The results above show that low-coordinated Mg structures are, in principle, stable, which
suggests that the formation of few-atom contacts might be possible, at least at low temperatures.
Moreover, since these structures are metallic, the following question naturally arises: what is
the expectation for the linear conductance of the smallest Mg contacts? In order to answer this
question, we have computed the conductance of Mg one-atom contacts within the Landauer
formalism. For this purpose, we have combined the tight-binding parameterization of [29]
with non-equilibrium Green’s function techniques. This approach has been very successful in
describing the transport properties of a great variety of metallic atomic-sized contacts [30]–[33].
We proceed to briefly explain it. In this approach, the electronic structure of the atomic contacts
is described in terms of the following Hamiltonian written in a nonorthogonal local basis:

Ĥ =

∑
iα, jβ,σ

Hiα, jβ ĉ†
iα,σ ĉ jβ,σ , (2)

where i and j run over the atomic sites, α and β denote different atomic orbitals, σ is the
spin and Hiα, jβ are the on-site energies (i = j) or hopping elements (i 6= j). Additionally,
we need the overlap integrals Siα, jβ of orbitals at different atomic positions. We take these
matrix elements from the tight-binding parameterization of [29], which is designed to accurately
reproduce the band structure of bulk materials. The atomic basis is formed by nine valence
orbitals, namely the s, p and d orbitals which give rise to the main bands around the Fermi
energy. In this parameterization, both the hoppings and the overlaps are functions of the atomic
distances, which have a cutoff radius that encloses up to 13 nearest-neighbour shells. Finally, in
order to take into account the low coordination in the smallest atomic contacts, we impose local
charge neutrality through the self-consistent variation of the on-site energies of the atoms in the
constrictions.

With the help of Green’s function techniques, one can translate the information on the
electronic structure contained in the Hamiltonian of equation (2) into the conductance of these
atomic junctions (see [31, 33] for details). As explained in section 1, this low-temperature
conductance adopts the form of the Landauer formula

G = G0T (EF) = G0

∑
n

τn, (3)

6 We have studied the stability of the linear chain allowing the four atoms of the supercell to relax starting from
a zigzag configuration. For cell lengths larger than 10.5 Å, the final configuration is a linear chain that is slightly
distorted, with an energy minimum corresponding to an interatomic distance of 3.125 Å and a zigzag angle of 177◦.
The stable solution for smaller supercell lengths is a compressed zigzag chain where the atoms have four nearest
neighbours with an interatomic distance of 3.1 Å.
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Figure 4. (a) Total transmission and transmission coefficients as a function of
energy for the contact shown in the inset. This geometry is grown along the
[0001] direction (c-axis); it contains a dimer in its central part and the interatomic
distances are fixed at the bulk values. The yellow atoms correspond to atoms
in the semi-infinite surfaces that are used to model the leads. The transmission
coefficients at the Fermi energy (set as zero and indicated with a dotted
vertical line) are τ1 = 0.993, τ2 = τ3 = 0.76 × 10−3 and the total conductance is
∼0.995 G0. (b) Histograms of the transmission coefficients for 2000 disorder
realizations (see text) of the one-atom contact of the inset of panel (a). The
brown atoms are those that have been randomly displaced. The vertical dotted
lines indicate the values of the transmission coefficients for the ideal geometry.
The transmission values of the second and third channels remain below 2 × 10−3

and are not shown. (c) Same as panel (a), but for the contact grown along the
[11 2̄0] direction (a-axis) shown in the inset. The total conductance is ∼1.01 G0

with τ1 = 0.9640, τ2 = 0.024, τ3 = 0.021 and τ4 = 0.3 × 10−3. (d) Same as panel
(b) for the contact in the inset of panel (c).

where G0 = 2e2/h denotes the quantum of conductance, EF the Fermi energy and τn the
transmission of the nth transmission eigenchannel at EF.

We now turn to analysis of the results for the linear conductance of some ideal, and yet
plausible, one-atom geometries, which have been chosen to simulate what may happen at the
last conductance plateau before the rupture of the nanowires. In the inset of figure 4(a), we show
an example of a one-atom contact grown along the [0001] direction (c-axis), which contains
a dimer in its central part. Different molecular dynamics simulations of atomic contacts of
various metals have suggested that this type of geometry is realized very frequently at the
last plateau [31, 33, 34]. This particular geometry is constructed starting with the dimer and
choosing the nearest neighbours in the next layers. Finally, the leads are modelled as infinite
surfaces grown along the same direction (yellow atoms in the inset of figure 4(a)). In this
ideal case, all interatomic distances are fixed to their bulk values, which is justified by the
ab initio calculation of Mg clusters [22] and our results for infinite wires presented above. The
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total transmission and the individual transmission coefficients, τi , for this contact are shown in
figure 4(a) as a function of energy. The first thing to notice is the fact that the system is metallic,
in accordance with our expectations based on the DFT results described above. Furthermore,
as one can see, the conductance, which is determined by the transmission at EF, is very close
to 1 G0 and is completely dominated by a single fully open channel. The second and third
channels, which are degenerate due to the symmetry of the contact, have transmissions below
10−3. One can get a deeper insight into these results and, in particular, into the nature of the
conduction channels, by analysing the local DOS projected onto the different orbitals of the
two central atoms (not shown here). Such an analysis indicates that the dominant channel is
formed by a symmetric (bonding) combination of the s and pz orbitals of the central atoms
(z is the transport direction), while the px and py orbitals are responsible for the second and
third channels. A fourth channel, which in this case has a transmission below 10−5, is formed
by the antisymmetric combination of the s and pz orbitals. Such an anti-bonding combination
is basically orthogonal to incoming states (from the leads) and therefore does not contribute
significantly to the transport. So, in short, these results resemble very much what happens in the
case of Zn one-atom contacts [4] and also in the case of the final stages of the last plateau of
Al contacts [35, 36]. This is, after all, quite reasonable since, in all these cases, the electronic
structure at the Fermi energy is governed by the s and p orbitals.

Since we do not exactly know the growth direction of the Mg atomic contacts, we
have studied the conductance of geometries with different crystallographic orientations. In
figure 4(c), we present another example of a dimer contact, but this time grown along the [112̄0]
direction (a-axis). Note that the total conductance and the transmission coefficients are similar
to those of the [0001] case, the main difference being the larger values for the second and third
channels and the lifting of their degeneracy. While the lack of degeneracy reflects the lower
symmetry of the contacts in the [112̄0] direction, the larger transmission values can be attributed
to the larger apex angle of those contact geometries and, in consequence, a stronger coupling of
the dimer atoms and next layers.

In principle, the contact geometries should be determined from molecular dynamic
simulations, but this is computationally very demanding. Instead, and in order to test the
robustness of our results, we have studied the role of disorder in the atomic positions. For this
purpose, starting from the ideal geometries of figures 4(a) and (c), we have changed randomly
the positions of the atoms in the constriction region (those highlighted in brown in figures 4(b)
and (d)) with a maximum amplitude of ±5% of the nearest-neighbour distance. Then, we have
computed the total transmission and the transmission coefficients of the disorder geometries,
and the results are shown in the form of histograms in figures 4(b) and (d). As one can see, in
both cases the conductance is still dominated by a single channel that is almost fully open.
Therefore, these results confirm our basic conclusion, namely the fact that a Mg one-atom
contact is expected to have a conductance close to 1 G0 dominated by a single channel.

5. Low-temperature results

In order to test this latter conclusion of our theoretical analysis, we repeated the experiments at
low temperatures. Here, we broke the contact by ramping the piezo element continuously with a
speed of 1.8 × 103 V s−1 (corresponding to 1.0 × 102 nm s−1 electrode separation). This resulted
in traces as the one shown in figure 5(a). The plateaus in conductance appear more structured
and the jumps during the mechanical reconfigurations are smaller than those measured at
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Figure 5. Figure comparable to figure 1, but for a measurement performed at
liquid helium temperature. Panel (a) shows the conductance evolution measured
at a bias voltage of 100 mV. Panel (b) shows a conductance histogram resulting
from 3 × 103 of these traces. The resolution of this histogram was set to 115 bins
per G0.

room temperature. In the conductance histogram, presented in figure 5(b), this results in a flat
distribution at higher conductance values. The shell structures found at room temperature are
thus absent at low temperatures, as we had expected.

When focusing on the trace at low conductance values, the staircase of plateaus indeed
continues down to values below 5 G0. The histogram, the shape of which was reproduced over a
set of ten different samples, shows its lowest conductance peak close to 1 G0. For a minority of
the histograms, a shoulder down to values as low as 0.8 G0 is seen. In rare cases, this shoulder
even grows to form the primary peak. Although the conductance does not reveal information
on the individual values of transmission, τi , of the electron states, the strong asymmetry and the
closeness of the peak to 1 G0 do suggest that its conductance is given by only one, almost fully
opened, channel. For multiple channels, the value of 1 G0 would not form a fundamental limit.

This result agrees nicely with our calculations for the conductance of Mg single-atom
contacts. The properties of Mg at low temperatures are therefore very close to the results
obtained previously for Zn [4]. The most noticeable differences are the absence of data points
between 0.5 G0 and tunnelling and the higher relative intensity of the peak close to 1 G0 in the
case of Mg. The presence of this peak indicates that the instability of small point contacts at
room temperature is not related to a metal-to-insulator transition.

6. Conclusions

In conclusion, magnesium contacts at room temperature demonstrate shell effects at multiple
frequencies. The most frequent and intense frequency of 1.7 (kF R)−1 did not match with
either the expected frequency for atomic packing or the previously calculated frequencies for
electronic shell structures. This value therefore remains without satisfactory explanation. One
possibility is that both effects play an important role at the same time.

The histograms at low temperatures exhibit a first peak close to 1 G0. The strongly
asymmetric shape of the peak, with a small weight above 1 G0, suggests that this conductance
is dominated by a single channel. Our calculations confirm this and identify this channel to be
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a symmetric combination of the s and pz orbitals of the central Mg atom. This behaviour is
similar to the results obtained for Zn [4], although the tendency for the channel to be fully open
is stronger.

At room temperature, contacts having the diameter of a single atom are absent. The
instability of these smaller contacts is not caused by a metal-to-insulator transition at lower
coordination. From the appearance of the peak at 1 G0 at low temperatures, we can conclude
that the metal–insulator transition is absent even in the smallest of contacts. Future experiments
at intermediate temperatures may prove valuable for understanding these different behaviours.
Our first principles calculations suggest that an infinite linear chain of Mg could be an insulator,
but they also show that as soon as the coordination is larger than 2, as in any realistic contact at
low temperatures, the system is metallic.
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