306 research outputs found

    Resolving climate impacts on fish stocks

    Get PDF
    Evidence is accumulating that the increase in CO2 is affecting the global climate, with far‐reaching implications for biological processes and ecosystem services. Recent studies suggest that there is evidence for a northward shift in the distributional range of fish species, but the mechanisms underlying these changes remain uncertain. Hence, it is largely unknown whether the observed distributional shifts are caused by a relocation of the spawning and feeding grounds, a change in the local survival of fish, or immigration into new habitats

    Phonon dispersion curves and atomic mean square displacement for several fcc and bcc materials

    Get PDF
    The atomic mean square displacement (MSD) and the phonon dispersion curves (PDC's) of a number of face-centred cubic (fcc) and body-centred cubic (bcc) materials have been calclllated from the quasiharmonic (QH) theory, the lowest order (A2 ) perturbation theory (PT) and a recently proposed Green's function (GF) method by Shukla and Hiibschle. The latter method includes certain anharmonic effects to all orders of anharmonicity. In order to determine the effect of the range of the interatomic interaction upon the anharmonic contributions to the MSD we have carried out our calculations for a Lennard-Jones (L-J) solid in the nearest-neighbour (NN) and next-nearest neighbour (NNN) approximations. These results can be presented in dimensionless units but if the NN and NNN results are to be compared with each other they must be converted to that of a real solid. When this is done for Xe, the QH MSD for the NN and NNN approximations are found to differ from each other by about 2%. For the A2 and GF results this difference amounts to 8% and 7% respectively. For the NN case we have also compared our PT results, which have been calculated exactly, with PT results calculated using a frequency-shift approximation. We conclude that this frequency-shift approximation is a poor approximation. We have calculated the MSD of five alkali metals, five bcc transition metals and seven fcc transition metals. The model potentials we have used include the Morse, modified Morse, and Rydberg potentials. In general the results obtained from the Green's function method are in the best agreement with experiment. However, this improvement is mostly qualitative and the values of MSD calculated from the Green's function method are not in much better agreement with the experimental data than those calculated from the QH theory. We have calculated the phonon dispersion curves (PDC's) of Na and Cu, using the 4 parameter modified Morse potential. In the case of Na, our results for the PDC's are in poor agreement with experiment. In the case of eu, the agreement between the tlleory and experiment is much better and in addition the results for the PDC's calclliated from the GF method are in better agreement with experiment that those obtained from the QH theory

    249–267 Predicting indirect effects of fishing in Mediterranean rocky littoral communities using a dynamic simulation model

    Get PDF
    Abstract Modelling may significantly enhance our understanding of the potential impacts of fisheries at larger spatial scales and on groups that would otherwise be very difficult to study. An aggregated biomass-based simulation model of a Mediterranean infralittoral zone was developed and used to carry out fishing 'experiments' where fishing intensity and catch selection were varied. The model was constructed for the Bay of Calvi, Corsica, using the Ecopath with Ecosim software, and was composed of 27 compartments, including seabirds, 11 groups of fish, 12 groups of invertebrates, 2 primary producers, bacteria and detritus. Several instances of indirect fishing effects ('trophic cascades' and 'keystone predation') have been proposed from anecdotal evidence in the western Mediterranean. Model outcomes provided little support for the widely accepted paradigm that fishing, by removing invertebrate-feeding fish, allows increases in the biomass of sea urchins and as a consequence the formation of overgrazed 'barrens' of bare substrate. Simulated harvesting of sea urchins by humans did, however, results in an increase of macroalgal biomass as reported previously. Intensified fishing pressure on 'macrocarnivorous' fish resulted in a 'release' of small fish species (e.g. blennies), and as a consequence a decline in the biomass of some small invertebrates on which they feed (e.g. amphipods). Increased fishing on large 'piscivores' resulted in increases in other small fish groups and consequential effects on other benthic invertebrate groups (e.g. polychaetes). Depletion of piscivorous fish resulted in a dramatic increase in the biomass of seabirds, which apparently compete with piscivores for small demersal and pelagic fish. An intensification of fishing pressure overall resulted in an increase in cephalopod biomass. Responses of target species to increased fishing pressure were most marked within the first 5 years of the new fishing regime. Indirect responses exhibited varying degrees of inertia, and biomasses of many groups did not assume a new equilibrium within the first 20 years of the simulation. The Mediterranean infralittoral rocky-bottom ecosystem was predicted to be relatively resilient to pulses of increased fishing and exhibited a high degree of detritus recycling. However, the speed and magnitude of ecosystem responses was shown to depend greatly on the extent of 'top-down' or 'bottom-up' control assumed for components within the system. Crow

    Redeveloping the compact city: the challenges of strata collective sales

    Full text link
    Purpose: High-density development requires large land parcels, but fragmented land ownership can impede redevelopment. While earlier compact city development in Sydney occurred on large-scale brownfield sites, redeveloping and re-amalgamating older strata-titled properties is now integral to further densification. The purpose of this study is to examine collective sales activity in one Sydney suburb where multiple strata-titled redevelopments and re-amalgamations have been attempted. The authors explore how owners navigate the process of selling collectively, focusing on their experience of legislation introduced to facilitate this process, the Strata Schemes Development Act 2015 [New South Wales (NSW)]. Design/methodology/approach: By reviewing sales listings, development applications and media coverage, and interviewing owners, lawyers and estate agents, the authors map out collective sale activity in a case study area in Sydney’s northwest. Findings: Strata collective sales are slow and difficult to complete, even when planning and market drivers align. Owners find the Strata Scheme Development Act 2015 (NSW) difficult to navigate and it has not prevented strategic blocking attempts by competing developers. The long timelines required to organise collective sales can result in failure if the market shifts in the interim. Nonetheless, owners remain interested in selling collectively. Originality/value: This case study is important for understanding the barriers to redevelopment to achieve a more compact city. It highlights lessons for other jurisdictions considering similar legislative changes. It also suggests that legislative change alone is insufficient to resolve the planning challenges created by hyper-fragmentation of land through strata-title development

    Socio-economic Impacts—Fisheries

    Get PDF
    Fishers and scientists have known for over 100 years that the status of fish stocks can be greatly influenced by prevailing climatic conditions. Based on historical sea surface temperature data, the North Sea has been identified as one of 20 ‘hot spots’ of climate change globally and projections for the next 100 years suggest that the region will continue to warm. The consequences of this rapid temperature rise are already being seen in shifts in species distribution and variability in stock recruitment. This chapter reviews current evidence for climate change effects on fisheries in the North Sea—one of the most important fishing grounds in the world—as well as available projections for North Sea fisheries in the future. Discussion focuses on biological, operational and wider market concerns, as well as on possible economic consequences. It is clear that fish communities and the fisheries that target them will be very different in 50 or 100 years’ time and that management and governance will need to adapt accordingly

    Carbon dioxide and ocean acidification observations in UK waters. Synthesis report with a focus on 2010–2015

    Get PDF
    Key messages: 1.1 The process of ocean acidification is now relatively well-documented at the global scale as a long-term trend in the open ocean. However, short-term and spatial variability can be high. 1.2 New datasets made available since Charting Progress 2 make it possible to greatly improve the characterisation of CO2 and ocean acidification in UK waters. 3.1 Recent UK cruise data contribute to large gaps in national and global datasets. 3.2 The new UK measurements confirm that pH is highly variable, therefore it is important to measure consistently to determine any long term trends. 3.3 Over the past 30 years, North Sea pH has decreased at 0.0035±0.0014 pH units per year. 3.4 Upper ocean pH values are highest in spring, lowest in autumn. These changes reflect the seasonal cycles in photosynthesis, respiration (decomposition) and water mixing. 3.5 Carbonate saturation states are minimal in the winter, and lower in 7 more northerly, colder waters. This temperature-dependence could have implications for future warming of the seas. 3.6 Over the annual cycle, North-west European seas are net sinks of CO2. However, during late summer to autumn months, some coastal waters may be significant sources. 3.7 In seasonally-stratified waters, sea-floor organisms naturally experience lower pH and saturation states; they may therefore be more vulnerable to threshold changes. 3.8 Large pH changes (0.5 - 1.0 units) can occur in the top 1 cm of sediment; however, such effects are not well-documented. 3.9 A coupled forecast model estimates the decrease in pH trend within the North Sea to be -0.0036±0.00034 pH units per year, under a high greenhouse gas emissions scenario (RCP 8.5). 3.10 Seasonal estimates from the forecast model demonstrate areas of the North Sea that are particularly vulnerable to aragonite undersaturation

    Predicting the Impact of Climate Change on Threatened Species in UK Waters

    Get PDF
    Global climate change is affecting the distribution of marine species and is thought to represent a threat to biodiversity. Previous studies project expansion of species range for some species and local extinction elsewhere under climate change. Such range shifts raise concern for species whose long-term persistence is already threatened by other human disturbances such as fishing. However, few studies have attempted to assess the effects of future climate change on threatened vertebrate marine species using a multi-model approach. There has also been a recent surge of interest in climate change impacts on protected areas. This study applies three species distribution models and two sets of climate model projections to explore the potential impacts of climate change on marine species by 2050. A set of species in the North Sea, including seven threatened and ten major commercial species were used as a case study. Changes in habitat suitability in selected candidate protected areas around the UK under future climatic scenarios were assessed for these species. Moreover, change in the degree of overlap between commercial and threatened species ranges was calculated as a proxy of the potential threat posed by overfishing through bycatch. The ensemble projections suggest northward shifts in species at an average rate of 27 km per decade, resulting in small average changes in range overlap between threatened and commercially exploited species. Furthermore, the adverse consequences of climate change on the habitat suitability of protected areas were projected to be small. Although the models show large variation in the predicted consequences of climate change, the multi-model approach helps identify the potential risk of increased exposure to human stressors of critically endangered species such as common skate (Dipturus batis) and angelshark (Squatina squatina)

    The economic impacts of ocean acidification on shellfish fisheries and aquaculture in the United Kingdom

    Get PDF
    Ocean acidification may pose a major threat to commercial fisheries, especially those for calcifying shellfish species. This study was undertaken to estimate the potential economic costs resulting from ocean acidification on UK wild capture and aquaculture shellfish production. Applying the net present value (NPV) and partial equilibrium (PE) models, we estimate both direct and economy-wide economic losses of shellfish production by 2100. Estimates using the NPV method show that the direct potential losses due to reduced shellfish production range from 14% to 28% of fishery NPV. This equates to annual economic losses of between o3 and o6 billion of the UK's GDP in 2013, for medium and high emission scenarios. Results using the PE model showed the total loss to the UK economy from shellfish production and consumption ranging from o23-o88 million. The results from both the direct valuation and predicted estimate for the economic losses on shellfish harvest indicate that there are regional variations due to different patterns of shellfish wild-capture and aquaculture, and the exploitation of species with differing sensitivities to ocean acidification. These results suggest that the potential economic losses vary depending on the chosen valuation method. This analysis is also partial as it did not include a wider group of species in early-life-stages or predator-prey effects. Nevertheless, findings show that the economic losses to the UK and its devolved administrations due to ocean acidification could be substantial. We conclude that addressing ocean acidification with the aim of preserving commercially valuable shellfish resources will require regional, national or international solutions using a combined approach to reduce atmospheric CO2 emissions and shift in focus to exploit species that are less vulnerable to ocean acidification

    Estimating contributions of pelagic and benthic pathways to consumer production in coupled marine food webs

    Get PDF
    1. Pelagic and benthic systems usually interact, but their dynamics and production rates differ. Such differences influence the distribution, reproductive cycles, growth rates, stability and productivity of the consumers they support. Consumer preferences for, and dependence on, pelagic or benthic production are governed by the availability of these sources of production and consumer life history, distribution, habitat, behavioural ecology, ontogenetic stage and morphology. 2. Diet studies may demonstrate the extent to which consumers feed on prey in pelagic or benthic environments. But they do not discriminate benthic production directly supported by phytoplankton from benthic production recycled through detrital pathways. The former will track the dynamics of phytoplankton production more closely than the latter. We develop and apply a new analytical method that uses carbon (C) and sulfur (S) natural abundance stable isotope data to assess the relative contribution of pelagic and benthic pathways to fish consumer production. 4. For 13 species of fish that dominate community biomass in the northern North Sea (estimated >90% of total biomass), relative modal use of pelagic pathways ranged from <25% to >85%. Use of both C and S isotopes as opposed to just C reduced uncertainty in relative modal use estimates. Temporal comparisons of relative modal use of pelagic and benthic pathways revealed similar ranking of species dependency over four years, but annual variation in relative modal use within species was typically 10-40%. 5. For the total fish consumer biomass in the study region, the C and S method linked approximately 70% and 30% of biomass to pelagic and benthic pathways respectively. As well as providing a new method to define consumers’ links to pelagic and benthic pathways our results demonstrate that a substantial proportion of fish biomass, and by inference production, in the northern North Sea is supported by production that has passed through transformations on the seabed

    Trade-offs between physical risk and economic reward affect fishers’ vulnerability to changing storminess

    Get PDF
    Climate change-driven alterations in storm frequency and intensity threaten the wellbeing of billions of people who depend on fisheries for food security and livelihoods. Weather conditions shape vulnerability to both loss of life and reduced fishing opportunities through their influence on fishers' daily participation decisions. The trade-off between physical risk at sea and the economic rewards of continued fishing under adverse weather conditions is a critical component of fishers’ trip decisions but is poorly understood. We employed a stated choice experiment with skippers from a temperate mixed-species fishery in southwest England to empirically assess how fishers trade off the risks from greater wind speed and wave height with the benefits of expected catch and prices. Technical fishing and socio-economic data were collected for individual fishers to identify the factors influencing trade-off decisions. Fishers preferred increased wind speed and wave height up to a threshold, after which they became increasingly averse to worsening conditions. Fishing gear, vessel length, presence of crew, vessel ownership, age, recent fishing success and reliance on fishing income all influenced the skippers’ decisions to go to sea. This study provides a first insight into the socio-economic, environmental, and technical fishing factors that can influence the sensitivity of individual fishers to changing storminess. These insights can help to inform fisheries climate vulnerability assessments and the development of adaptation measures
    corecore