158 research outputs found

    Mechanisms of eye gaze perception during infancy

    Get PDF
    Previous work has shown that infants are sensitive to the direction of gaze of another's face, and that gaze direction can cue attention. The present study replicates and extends results on the ERP correlates of gaze processing in 4-month-olds. In two experiments, we recorded ERPs while 4-month-olds viewed direct and averted gaze within the context of averted and inverted heads. Our results support the previous finding that cortical processing of faces in infants is enhanced when accompanied by direct gaze. However, this effect is only found when eyes are presented within the context of an upright face

    Driver glance behaviors and scanning patterns: Applying static and dynamic glance measures to the analysis of curve driving with secondary tasks

    Full text link
    Performing secondary tasks (or non‐driving‐related tasks) while driving on curved roads may be risky and unsafe. The purpose of this study was to explore whether driving safety in situations involving curved roads and secondary tasks can be evaluated using multiple measures of eye movement. We adopted Markov‐based transition algorithms (i.e., transition/stationary probabilities, entropy) to quantify drivers’ dynamic eye movement patterns, in addition to typical static visual measures, such as frequency and duration of glances. The algorithms were evaluated with data from an experiment (Jeong & Liu, 2019) involving multiple road curvatures and stimulus‐response secondary task types. Drivers were more likely to scan only a few areas of interest with a long duration in sharper curves. Total head‐down glance time was longer in less sharp curves in the experiment, but the probability of head‐down glances was higher in sharper curves over the long run. The number of reliable transitions between areas of interest varied with the secondary task type. The visual scanning patterns for visually undemanding tasks were as random as those for visually demanding tasks. Markov‐based measures of dynamic eye movements provided insights to better understand drivers’ underlying mental processes and scanning strategies, compared with typical static measures. The presented methods and results can be useful for in‐vehicle systems design and for further analysis of visual scanning patterns in the transportation domain.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151975/1/hfm20798_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151975/2/hfm20798.pd

    Individual influenza A virus mRNAs show differential dependence on cellular NXF1/TAP for their nuclear export

    Get PDF
    The influenza A virus RNA-dependent RNA polymerase produces capped and polyadenylated mRNAs in the nucleus of infected cells that resemble mature cellular mRNAs, but are made by very different mechanisms. Furthermore, only two of the 10 viral protein-coding mRNAs are spliced: most are intronless, while two contain unremoved introns. The mechanism(s) by which any of these mRNAs are exported from the nucleus is uncertain. To probe the involvement of the primary cellular mRNA export pathway, we treated cells with siRNAs against NXF1, Aly or UAP56, or with the drug 5,6-dichloro-1-β-d-ribofuranosyl-benzimidazole (DRB), an inhibitor of RNA polymerase II phosphorylation previously shown to inhibit nuclear export of cellular mRNA as well as influenza virus segment 7 mRNAs. Depletion of NXF1 or DRB treatment had similar effects, inhibiting the nuclear export of several of the viral mRNAs. However, differing degrees of sensitivity were seen, depending on the particular segment examined. Intronless HA mRNA and spliced M2 or unspliced M1 transcripts (all encoding late proteins) showed a strong requirement for NXF1, while intronless early gene mRNAs, especially NP mRNA, showed the least dependency. Depletion of Aly had little effect on viral mRNA export, but reduction of UAP56 levels strongly inhibited trafficking and/or translation of the M1, M2 and NS1 mRNAs. Synthesis of NS2 from the spliced segment 8 transcript was, however, resistant. We conclude that influenza A virus co-opts the main cellular mRNA export pathway for a subset of its mRNAs, including most but not all late gene transcripts

    Inhibiting the stringent response blocks Mycobacterium tuberculosis entry into quiescence and reduces persistence

    Get PDF
    The stringent response enables Mycobacterium tuberculosis (Mtb) to shut down its replication and metabolism under various stresses. Here we show that Mtb lacking the stringent response enzyme RelMtb was unable to slow its replication rate during nutrient starvation. Metabolomics analysis revealed that the nutrient-starved relMtb-deficient strain had increased metabolism similar to that of exponentially growing wild-type bacteria in nutrient-rich broth, consistent with an inability to enter quiescence. Deficiency of relMtb increased the susceptibility of mutant bacteria to killing by isoniazid during nutrient starvation and in the lungs of chronically infected mice. We screened a pharmaceutical library of over 2 million compounds for inhibitors of RelMtb and showed that the lead compound X9 was able to directly kill nutrient-starved M. tuberculosis and enhanced the killing activity of isoniazid. Inhibition of RelMtb is a promising approach to target M. tuberculosis persisters, with the potential to shorten the duration of TB treatment.This work was supported by R01AI083125, R21AI122922, and R21AI114507A to P.C.

    Predicting Eye Fixations on Complex Visual Stimuli Using Local Symmetry

    Get PDF
    Most bottom-up models that predict human eye fixations are based on contrast features. The saliency model of Itti, Koch and Niebur is an example of such contrast-saliency models. Although the model has been successfully compared to human eye fixations, we show that it lacks preciseness in the prediction of fixations on mirror-symmetrical forms. The contrast model gives high response at the borders, whereas human observers consistently look at the symmetrical center of these forms. We propose a saliency model that predicts eye fixations using local mirror symmetry. To test the model, we performed an eye-tracking experiment with participants viewing complex photographic images and compared the data with our symmetry model and the contrast model. The results show that our symmetry model predicts human eye fixations significantly better on a wide variety of images including many that are not selected for their symmetrical content. Moreover, our results show that especially early fixations are on highly symmetrical areas of the images. We conclude that symmetry is a strong predictor of human eye fixations and that it can be used as a predictor of the order of fixation

    Transcriptional Reprogramming in Nonhuman Primate (Rhesus Macaque) Tuberculosis Granulomas

    Get PDF
    In response to Mtb infection, the host remodels the infection foci into a dense mass of cells known as the granuloma. The key objective of the granuloma is to contain the spread of Mtb into uninfected regions of the lung. However, it appears that Mtb has evolved mechanisms to resist killing in the granuloma. Profiling granuloma transcriptome will identify key immune signaling pathways active during TB infection. Such studies are not possible in human granulomas, due to various confounding factors. Nonhuman Primates (NHPs) infected with Mtb accurately reflect human TB in clinical and pathological contexts.We studied transcriptomics of granuloma lesions in the lungs of NHPs exhibiting active TB, during early and late stages of infection. Early TB lesions were characterized by a highly pro-inflammatory environment, expressing high levels of immune signaling pathways involving IFNgamma, TNFalpha, JAK, STAT and C-C/C-X-C chemokines. Late TB lesions, while morphologically similar to the early ones, exhibited an overwhelming silencing of the inflammatory response. Reprogramming of the granuloma transcriptome was highly significant. The expression of approximately two-thirds of all genes induced in early lesions was later repressed.The transcriptional characteristics of TB granulomas undergo drastic changes during the course of infection. The overwhelming reprogramming of the initial pro-inflammatory surge in late lesions may be a host strategy to limit immunopathology. We propose that these host profiles can predict changes in bacterial replication and physiology, perhaps serving as markers for latency and reactivation

    Identification of a novel splice variant form of the influenza a virus m2 ion channel with an antigenically distinct ectodomain

    Get PDF
    Segment 7 of influenza A virus produces up to four mRNAs. Unspliced transcripts encode M1, spliced mRNA2 encodes the M2 ion channel, while protein products from spliced mRNAs 3 and 4 have not previously been identified. The M2 protein plays important roles in virus entry and assembly, and is a target for antiviral drugs and vaccination. Surprisingly, M2 is not essential for virus replication in a laboratory setting, although its loss attenuates the virus. To better understand how IAV might replicate without M2, we studied the reversion mechanism of an M2-null virus. Serial passage of a virus lacking the mRNA2 splice donor site identified a single nucleotide pseudoreverting mutation, which restored growth in cell culture and virulence in mice by upregulating mRNA4 synthesis rather than by reinstating mRNA2 production. We show that mRNA4 encodes a novel M2-related protein (designated M42) with an antigenically distinct ectodomain that can functionally replace M2 despite showing clear differences in intracellular localisation, being largely retained in the Golgi compartment. We also show that the expression of two distinct ion channel proteins is not unique to laboratory-adapted viruses but, most notably, was also a feature of the 1983 North American outbreak of H5N2 highly pathogenic avian influenza virus. In identifying a 14th influenza A polypeptide, our data reinforce the unexpectedly high coding capacity of the viral genome and have implications for virus evolution, as well as for understanding the role of M2 in the virus life cycle

    Visual Scan Paths and Recognition of Facial Identity in Autism Spectrum Disorder and Typical Development

    Get PDF
    Background: Previous research suggests that many individuals with autism spectrum disorder (ASD) have impaired facial identity recognition, and also exhibit abnormal visual scanning of faces. Here, two hypotheses accounting for an association between these observations were tested: i) better facial identity recognition is associated with increased gaze time on the Eye region; ii) better facial identity recognition is associated with increased eye-movements around the face. Methodology and Principal Findings: Eye-movements of 11 children with ASD and 11 age-matched typically developing (TD) controls were recorded whilst they viewed a series of faces, and then completed a two alternative forced-choice recognition memory test for the faces. Scores on the memory task were standardized according to age. In both groups, there was no evidence of an association between the proportion of time spent looking at the Eye region of faces and age-standardized recognition performance, thus the first hypothesis was rejected. However, the 'Dynamic Scanning Index' - which was incremented each time the participant saccaded into and out of one of the core-feature interest areas - was strongly asso ciated with age-standardized face recognition scores in both groups, even after controlling for various other potential predictors of performance. Conclusions and Significance: In support of the second hypothesis, results suggested that increased saccading between core-features was associated with more accurate face recognition ability, both in typical development and ASD. Causal directions of this relationship remain undetermined.10 page(s
    corecore