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SUMMARY

Widespread resistance to first-line TB drugs is a ma-
jor problem that will likely only be resolved through
the development of new drugs with novel mecha-
nisms of action. We have used structure-guided
methods to develop a lead molecule that targets
the thioesterase activity of polyketide synthase
Pks13, an essential enzyme that formsmycolic acids,
required for the cell wall of Mycobacterium tubercu-
losis. Our lead, TAM16, is a benzofuran class inhibitor
of Pks13 with highly potent in vitro bactericidal activ-
ity against drug-susceptible and drug-resistant clin-
ical isolates of M. tuberculosis. In multiple mouse
models of TB infection, TAM16 showed in vivo effi-
cacy equal to the first-line TB drug isoniazid, both
as a monotherapy and in combination therapy with
rifampicin. TAM16 has excellent pharmacological
and safety profiles, and the frequency of resistance
for TAM16 is �100-fold lower than INH, suggesting
that it can be developed as a new antitubercular
aimed at the acute infection.

INTRODUCTION

Drug-resistance in Mycobacterium tuberculosis (Mtb) is a

serious problem that threatens to worsen the global tuberculosis

(TB) epidemic (World Health Organization, 2014). Although cur-

rent six-month therapy for drug-susceptible TB can achieve a

cure rate of >90%, the treatment of drug-resistant strains is

more protracted (R2 years) and involves the use of costly and

less effective second-line drugs that have significant side effects

(Zumla et al., 2013).

Isoniazid (INH) is a frontline TB drug that has been a mainstay

of TB therapy since its introduction in 1952 (Bernstein et al.,

1952). However, resistance occurs frequently with in vitro rates

of about 1 in 10�5–10�6, which translates to high levels of clinical

resistance ranging from 9.5% to 62%, based on geography and

disease burden (Jenkins et al., 2011; World Health Organization,

2014). INH is a pro-drug that is activated by a catalase-peroxi-

dase enzyme (KatG) to produce a radical that attacks nicotin-

amide adenine dinucleotide (NAD) to form a covalent adduct.

This adduct inhibits the enoyl-ACP reductase, InhA (Rozwarski

et al., 1998), an enzyme required for the synthesis of very long

chain fatty acids that are used to form mycolic acids (Vilchèze

et al., 2000). Because INH is activated by the non-essential

KatG, resistance to INH often arises through loss-of-function

mutations in the katG gene (Heym et al., 1995; Zhang et al.,

1992). Indeed, the most common cause of INH resistance is

the loss-of-function mutation KatG-S315T, which has been

found in as many as 94% of INH-resistant and up to 82% of

multidrug-resistant (MDR) Mtb clinical isolates (Torres et al.,

2015). In addition, mutations in the inhA gene and its promoter

region, i.e., the c-15t base change, further complicate the treat-

ment of drug-resistant TB, conferring resistance not only to INH

but also to the second-line TB drug ethionamide (ETH) (Banerjee

et al., 1994), with reported frequencies of 35% and 55% in INH-

and ETH-resistant clinical isolates, respectively (Vilcheze and

Jacobs, 2014). After 65 years of use, the widespread and very

high levels of INH resistance underscore the urgent clinical

need for the development of alternative cell wall-active antibi-

otics for TB.

Mycolic acids are critical for viability and virulence of Mtb.

Though these long-chain (C60–90) a-branched-b-hydroxylated
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fatty acids are primarily found esterified to the arabinogalactan-

peptidoglycan cell wall core, they are also present as trehalose

monomycolate and dimycolate esters in the cell envelope (Barry

et al., 1998). In Mtb, mycolic acid biosynthesis occurs through

the concerted action of more than 20 enzymes that are compo-

nents of different multi-enzyme complexes (Takayama et al.,

2005). Therefore, this pathway represents an important reservoir

of novel targets for the development of new TB drugs, especially

in the context of the emergence of drug resistance.

Polyketide synthases (PKS) are an important family of en-

zymes that have not been exploited as drug targets for any mi-

crobial pathogen. The Mtb H37Rv genome has about 24 PKS

encoding genes (Cole et al., 1998). Genetic and biochemical

studies have now linked most of the mycobacterial PKSs to

participating in complex lipid biosynthestic pathways in Mtb

(Chopra and Gokhale, 2009; Quadri, 2014). These PKS-derived

lipid metabolites form essential components of the uniquely

lipid-rich and complex cell wall ofMtb, which has been proposed

as a means for it to survive under harsh conditions in host mac-

rophages while also imparting an intrinsic resistance against

Figure 1. Novel Benzofurans Inhibit Pks13

Thioesetrase Domain

(A) Chemical structure of TAM1 highlighting the

convention used for naming the substituent

groups (P1, P2, P3, and P4) and numbering of the

benzofuran ring. TAM1 inhibits the esterase ac-

tivity of Pks13-TE with an IC50 = 0.26 ± 0.03 mM.

The graph depicts percent activity relative to

DMSO only control (mean ± SD).

(B) Overall view of the structure of the Pks13-TE-

TAM1 complex showing structural features of the

Pks13-TE domain. Catalytic residues His1699 and

Ser1533 at the interface of the lid and core do-

mains are shown as ball and sticks. TAM1 is

shown as yellow sticks.

(C and D) Close-up views of inhibitor interactions

show that benzofuran core of TAM1 (yellow sticks)

wedges between Phe1670 and Asn1640 with its

P3 group oriented toward the catalytic site.

Hydrogen bonds are represented by dashed lines.

Surface representation in (C) is colored by elec-

trostatic potential (contoured at ± 5 kT/e, red for

negative and blue for positive).

See also Figure S1 and Tables S1, S2, and S3.

many anti-microbial agents (Bhatt et al.,

2007; Glickman et al., 2000).

In Mtb, Pks13 performs the final as-

sembly step of mycolic acid synthesis,

i.e., the Claisen-type condensation of a

C26 a-alkyl branch and C40–60 meromyco-

late precursors (Portevin et al., 2004). It

is comprised of five domains, including

two acyl carrier protein domains, a b-ke-

toacyl-synthase, an acyltransferase, and

a C-terminal thioesterase (TE) domain,

that together contain all of the activities

required for the condensation of two

long-chain fatty acids. This activity has

been shown to be essential both in vitro and in vivo (Portevin

et al., 2004; Wilson et al., 2013). We recently discovered a small

molecule that was active against Mtb H37Rv (TAM1; Figure 1A)

and identified that Pks13 was the target through whole-genome

sequencing and recombineering of the resistance mutations

(Ioerger et al., 2013). In another study, a series of thiophenes

were identified that kill Mtb by targeting the N-terminal ACPN

domain of Pks13. Wilson et al., 2013, propose that the com-

pounds function by blocking the interaction of ACPN with

FadD32 protein, which transfers the meromycolyl chain. These

results substantiate Pks13 as a druggable target for Mtb and

highlight its potential for the development of new TB drugs that

interfere with the critical pathway of mycolic acid synthesis.

In this paper, we describe the structure-based development

of a highly potent and very safe lead compound, TAM16 (Table

1), which targets Pks13. It is active against MDR and exten-

sively drug-resistant (XDR) Mtb clinical strains in vitro, demon-

strating a lack of cross-resistance with existing TB therapeu-

tics. By inhibiting cell wall biosynthesis, it synergizes with

other TB drugs, like rifampicin (RIF), likely by augmenting their
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penetration into Mtb. Importantly, in murine TB infection

models, it demonstrates efficacy equal to INH. Furthermore,

unlike INH, which shows a relative high frequency of resistance,

TAM16 shows 100-fold lower frequency of resistance. These

properties, combined with the excellent pharmacokinetic (PK)

and toxicity profiles, will likely allow us to convert this lead

into a first-line drug.

RESULTS

TAM1 Inhibits Pks13 TE Domain Activity
Two laboratory-derived mutant strains resistant to TAM1

were found to harbor non-synonymous mutations, i.e., either

D1607N or D1644G, both located in the TE domain of Pks13.

To characterize the precise mechanism of action of TAM1 on

the TE activity, a recombinant-expression plasmid was con-

structed to produce the domain for biochemical analysis. The

pure recombinant protein, consisting of the TE domain of the

Pks13 (Pks13-TE), was enzymatically active and produced

diffraction-quality crystals complexed to TAM1.

An enzyme assay was developed for the TE activity of

Pks13 using the fluorescent fatty acid ester, 4-methylumbelliferyl

heptanoate (4-MUH) (Richardson and Smith, 2007). Pks13-TE

was able to cleave the ester of 4-MUH, and kinetic analysis

indicated a Michaelis constant (Km) �20 mM and kcat/Km �
7.2 3 102 M�1 min�1 (Table S1). TAM1 inhibited the Pks13-TE

activity with a half-maximal inhibitory concentration (IC50) of

0.26 mM (Figure 1A; Table S1).

TAM1 Blocks the Active Site of Pks13-TE
As a first step to structure-guided medicinal chemistry on the

benzofuran inhibitor, we solved the crystal structure of Pks13-

TE complexed with TAM1 and refined it to high resolution

(2.0 Å; Table S2). The crystals contained two monomers in the

crystallographic asymmetric unit (designated A andB). The over-

all structure of Pks13-TE consists of a core domain and a

lid domain (Figure 1B). The larger core possesses a canonical

a/b-hydrolase fold comprised of a central seven-stranded b

sheet (b1–b7) flanked by four a helices (a1–a3 and a11) with

the N-terminal b1 strand anti-parallel to other b strands (Nardini

and Dijkstra, 1999). The lid domain (residues 1575–1645) is in-

serted between strands b5 and b6 and consists of four a helices,

a4–a7, along with two short helices, a8 and a9, (residues 1665–

1675) present between the strands b6 and b7 of the core domain.

Based on the analysis with VAST server (Gibrat et al., 1996), the

Pks13-TE lid domain appears to be relatively unique among TE

structures reported to date.

The Pks13-TE active-site pocket is formed at the interface be-

tween the lid and core domains. The catalytic triad was identified

to be Ser1533, Asp1560, and His1699, and the oxyanion hole is

formed by the amide N-atoms of Leu1534 and Ala1477. Extend-

ing from the active site is a deep (�30 Å) hydrophobic groove that

spans the full length of the lid domain, with a total surface area of

�1290 Å2 (Figure S1A). A similarly located surface groove

(�20 Å) in the a-helical lid domain of bovine palmitoyl-protein

thioesterase 1 (PPT1, 15% identity with Pks13-TE), contained

the substrate palmitic acid (Bellizzi et al., 2000). We observed

unexpected electron density in this pocket of apo-Pks13-TE

structure that could be built as an eight-carbon fragment of poly-

propylene glycol (PPG, C8O5), an additive in the crystallization

buffer. The fragment is located in the fatty acyl chain-binding

site based on the superimposition of Pks13-TE structure with

the bovine PPT1 and human FAS TE (hFAS-TE) structures

(Zhang et al., 2011). However, unlike the Pks13-TE acyl chain-

binding site, the bovine PPT1 and hFAS-TE is not surface

exposed. The PPG binding pocket is connected at the catalytic

site to a series of tunnel-like regions that could also bind an

acyl chain (Figure S1B). The more elaborate system of binding

grooves and tunnels is likely related to the very long carbon

chains (C80–90) that make up the mycolic acid precursor,

compared to PPT1 and hFAS (Figure S1C).

TAM1 binds in the fatty acyl chain-binding groove at the

entrance of the Pks13-TE active site, effectively blocking access

of the substrate to the catalytic center of the enzyme (Figures

1B–1D). Several differences were seen between the apo- and

TAM1-bound structures of Pks13-TE, the most significant being

in the side chain of Phe1670. Phe1670 is located at the end of he-

lix a8 directly adjacent to the acyl binding pocket. The phenyl ring

of Phe1670 flips by about 80� in the TAM1 structure, compared

to the apo protein, to form a slightly off-plane van der Waals

stacking interaction with the furan ring (Figure S2A). The four

different substituents attached to the benzofuran scaffold (P1,

P2, P3, and P4; Figure 1A) were found to interact with residues

that line the substrate-binding cleft. Indeed, most of the binding

interactions occur between amino acids from helix a7 of the lid

domain and the two supporting helices a8–a9 along with the

loop that connects them to strand b6 of the core domain (Figures

1B and 1D). Overall, the structure showed that the phenyl group

of TAM1 (P1) is solvent exposed; P2 ethyl ester is partially solvent

exposed, while P3 piperidine and P4 OH are completely buried in

Pks13-TE.

The Pks13-TE structure shows that the D1644Gmutation con-

fers resistance through the loss of a direct H bond between a

carboxylate oxygen and the P4 OH of TAM1. The crystal struc-

ture of the D1607N mutant (Figure S2B; Table S2) explained its

more subtle effect on binding, through the loss of ion pair inter-

action between the carboxylate of Asp1607 on helix a6 and the

guanidinium of Arg1641 (3 Å) located on the parallel helix, a7.

Without this interaction, a7 shifts away from the substrate-bind-

ing groove by about 3 Å, moving Asp1644 out of hydrogen-

bonding distance from the P4 OH of TAM1.

Structure-Based Development of TAM1 Analogs
TAM1 was modified using structure-guided approaches to

improve the potency and pharmacological properties (Table 1;

Figure 2; STAR Methods; Table S3). Briefly, the two major phar-

macological liabilities of TAM1were the phenyl at P1, which was

hydroxylated in mouse liver microsomes (MLMs) to yield primar-

ily the 4-OH (Figure S3A), and the P2 ester, which was cleaved to

the inactive acid in mouse serum. The structure of the Pks13-TE-

TAM1 complex indicated that the side chain amide of Gln1633

was positioned in close proximity (�4 Å) to the para-position of

the P1 phenyl ring, suggesting that 4-OH form of the inhibitor

would retain enzyme inhibitory activity. Indeed, the P1 4-OH-

containing analog, TAM16, had greatly improved metabolic sta-

bility (Figure S3), showed significant improvement in enzyme
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Table 1. Preliminary SAR of TAM1 and Its Analogs

Compound P1 P2 P3 P4 IC50 (mM)* MIC (mM)

TAM1 OH 0.26 ± 0.03 2.3

TAM2 OH 0.12 ± 0.02 4.4

TAM3 OH 0.24 ± 0.02 4.1

TAM4 OH 0.28 ± 0.03 4.6

TAM5 OH 0.71 ± 0.05 13.3

TAM6 OH 1.57 ± 0.15 7.3

TAM7 None OH 20 ± 1.9 20

TAM8 OH 11.9 ± 2.3 >40

TAM9 OH 0.26 ± 0.04 0.4

TAM10 OH 6.6 ± 0.7 NI

TAM11 OH 19.6 ± 1.4 5.2

TAM12 OH 0.29 ± 0.01 0.2

TAM13 OH 0.17 ± 0.02 1.2

TAM14 MeO 35.8 ± 2.2 ND

TAM15 H 2.0 ± 0.1 16

TAM16 OH 0.19 ± 0.01 0.09

TAM17 OH 0.36 ± 0.04 4

TAM18 OH 0.33 ± 0.03 0.5

TAM19 H, C6-OH 0.57 ± 0.03 1

TAM20 H, C6-OH 0.45 ± 0.04 1.1

(Continued on next page)
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potency, and exhibited >20-fold improvement in Mtb potency

compared with TAM1 (Table 1). The structure also indicated

that the bioisosteric replacement of the ester with a methyl

amide that would be stable in serum would be tolerated in the

binding pocket. Indeed, the methyl amide of TAM12 was stable

and showed similar enzyme-inhibitory activity (IC50 0.3 mM) as

the ethyl ester analog TAM9; however, it exhibited 2-fold better

whole-cell activity (Table 1). Among P3 groups, the piperidine

was the most potent of the P3 substituents synthesized. Struc-

tures of P3 substituted analogs showed that five-, six-, and

seven-membered rings at P3 led to variations in the van der

Waals and stacking interactions with the planar side chain of

Tyr1674, and these interactions were abolished in TAM6 with

acyclic dimethyl amine at P3. Thus, among the P3 analogs, the

piperidine group was optimally located sandwiched between

Tyr1663 and Tyr1674, and its protonated N appears to be a

bifurcated hydrogen donor, forming an intra-molecular hydrogen

bond with the P2 carbonyl oxygen (2.9 Å) and another with

the side chain oxygen of Asn1640 (2.9 Å). We also explored

alterations to the P4 OH group. All P4 analogs at C-5 showed

a dramatic loss in enzyme potency presumably due to loss

of hydrogen bond with the carboxylate of Asp1644. The result-

ing molecule, TAM16, was the most potent and stable inhib-

itor (IC50 0.19 mM, minimum inhibitory concentration [MIC]

0.09 mM) (Figures 2 and S3B).

Low Frequency of Resistance, No Cross-Resistance,
and Combination Potential of TAM16
Resistant mutants emerged at frequencies of 73 10�7 and�83

10�8 at 103 and 203MIC, which were �100-fold lower than the

frequency observed for INH (13 10�6). Sequencing of two resis-

tant mutants revealed point mutations in pks13 that resulted in

a single non-synonymous amino acid substitution in Pks13

(D1644G or D1644Y), and they retained sensitivity to INH and

RIF (MICs 0.2 and 0.04 mM, respectively).

We determined MIC values of TAM16 against 38 clinical Mtb

strains representing a wide range of mutations covering all

known molecular mechanisms involved in imparting resistance

against first- and second-line TB drugs that form the core

component of TB treatment regimen (Tables S4 and S5).

TAM16 was highly active against pan-susceptible clinical iso-

lates of Mtb (MICs 0.06–0.250 mM). Most importantly, TAM16

was potent against all MDR and XDR clinical isolates of Mtb

evaluated (MIC range of 0.05–0.42 mM; Table 2). The lack of

cross-resistance of TAM16 with current TB drugs shows the

importance of developing new drugs with distinct modes of

action.

One of the advantages of drugs that target cell wall biosyn-

thesis, like INH, is their ability to combine with other antibiotics

to increase efficacy. We tested TAM16 in combination with

INH, RIF, and EMB in vitro in two-drug combination studies

by the combination index (CI) method (Chou, 2006) (wherein

CI < 1, CI = 1, andCI > 1 indicate synergistic, additive, and antag-

onistic interactions, respectively). While TAM16 showed no syn-

ergistic activity with INH and EMB, the two other drugs that

target cell wall, the combination of TAM16 with RIF, which tar-

gets the RNA polymerase, showed highly synergistic activity

(CI = 0.55) againstMtbmc27000. Notably, at the combination ra-

tio of 1:0.5, the MIC of RIF was improved �3-fold to 0.011 mM

compared to RIF alone (MIC 0.35 mM), while the MIC of TAM16

improved by 5-fold (0.022 mM) compared to TAM16 alone

(0.10 mM). This synergy is likely based on increased permeability

of the bacterial cell wall leading to enhanced RIF accumulation.

Indeed, two-drug combinations of TAM16 with antitubercular

drugs TMC207 (a diarylquinoline compound that inhibits ATP

synthesis) and streptomycin (SM, an aminoglycoside antibiotic

that inhibits protein synthesis) also showed synergistic activity

(CI �0.54 and 0.81, respectively). The combination of TAM16

and TMC207 (at a combination ratio of 1:0.5) improved the

MIC of TAM16 in the presence of TMC207 by �6.5-fold to

0.016 mM, and the MIC of TMC207 in the presence of TAM16

was improved 2.6-fold to 0.005 mM compared to the MIC of

TMC207 alone (MIC 0.013 mM). Similarly, the combination of

TAM16 and SM (at a combination ratio of 1:2) was synergistic:

it improved TAM16 MIC by �4-fold in the presence of SM, and

the addition of TAM16 improved the MIC of SM �2-fold to

Table 1. Continued

Compound P1 P2 P3 P4 IC50 (mM)* MIC (mM)

TAM21 OH 0.42 ± 0.04 10

TAM22 OH >10 >10

TAM23 OH 0.38 ± 0.01 2.5

TAM24 OH 2.1 ± 0.3 0.5

IC50 values were determined using theMtb Pks13-TE domain as described in the methods section. MIC values were determined for Mtb mc27000 in

liquid medium in 96-well plates. MeO, methoxy; NI, no inhibition; ND, not determined.

*Values are shown as mean ± SD of three independent measurements.
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0.037 mM compared to the SM MIC when it was used alone

(0.07 mM). Overall, these results are consistent with previously

observed effects of cell wall inhibitors on improving the penetra-

tion of anti-Mtb drugs (Bhusal et al., 2005; Bosne-David et al.,

2000; Lechartier et al., 2012).

Toxicology and Pharmacokinetic Properties of TAM16
TAM16 has excellent physicochemical, toxicological, and phar-

macological properties (Table 3). It showed low plasma protein

binding in both mouse and human plasma and exhibited very

low clearance in MLM and HLMs (human liver microsomes)

(CLint < 0.5 mL/min/g liver; Table 3), and the two phenolic OH

groups were not significantly glucuronidated in the microsomal

incubation assays (Figure S3C).

Pharmacokinetic studies in Swiss Webster mice were per-

formed with TAM16 dosed by oral administration at 100 mg/kg

twice daily. At this dose, maximum plasma concentration

(Cmax) of TAM16 reached 3.6 mg/ml at 5 hr, and the AUC was

18.3 mg.hr/ml. At a single dose of TAM16, mouse exposure

was higher than the MIC (34.3 ng/ml) for �12 hr. Pharmacoki-

netic parameters determined after a single oral and intra-

venous dose of 10 mg/kg and 3 mg/kg, respectively, in

BALB/c mice showed that TAM16 had moderate total plasma

clearance (37 mL/min per kg), a large volume of distribution

(4.2 l/kg), good exposure, and oral bioavailability (28%) (Table 3;

Figure S4).

TAM16 was not cytotoxic to mammalian cells at concentra-

tions up to 100 mM, and it was well tolerated in BALB/c mice

at up to 300 mg/kg administered orally once daily for 3 days.

Furthermore, TAM16 had no observable inhibitory activity

against most of the major CYP isoforms (Table S6). hERG inhi-

bition activity of TAM16 was evaluated by thallium (Tl+) flux

assay (Schmalhofer et al., 2010) displaying an IC50 of 21 mM.

Additional off-target activity screening against a broad panel

of therapeutically relevant enzymes and receptors did not reveal

any significant issues related to human safety. Moreover, in a

two-strain Ames fluctuation assay for genotoxicity, the com-

pound did not exhibit mutagenic potential in the two strains

with or without S9.

For an antitubercular compound to be effective, it is essential

that it achieves high exposure in the infected tissue consisting

of macrophages and other immune cells in the human host.

Cellular uptake studies using the cell line THP-1 as an in vitro

macrophage model (Stokes and Doxsee, 1999) showed that,

Figure 2. Structure-Guided Development of TAM16

Substitution of P1 and P2 groups in TAM16 with phenol and methyl amide, respectively, increased potency and metabolic stability. Calculated log(P), calculated

log(partition coefficient); Mouse Cli., intrinsic clearance in mouse liver microsomes.

Table 2. TAM16 MIC Values for Mtb Strains with Different Drug-Susceptibility Profiles, Related to Tables S4 and S5

Strain and resistance statusa Number of strains MIC90
b range for multiple strains (mM) Median MIC90 (mM)

H37Rv, fully susceptible lab strain 1 - 0.125-0.25

H37RvMa, fully susceptible lab strain 1 - 0.125

Mtb, fully susceptible clinical isolates 12 0.060-0.250 0.100

Mtb, poly-resistant clinical isolate 1 - 0.420

Mtb, MDR clinical isolates 7 0.060-0.210 0.210

Mtb, pre-XDR clinical isolates 5 0.125-0.420 0.420

Mtb, XDR clinical isolates 5 0.125-0.250 0.125

Mtb, INH mono-resistant, clinical 6 0.050-0.125 0.100

Mtb, RIF mono-resistant, clinical 1 - 0.125

Mtb, SM mono-resistant, clinical 1 - 0.420

Poly-resistant, Mtb-strain resistant to isoniazid (INH), ethionamide, and streptomycin (SM); MDR, resistant to both INH and rifampicin (RIF), with or

without resistance to other anti-TB drugs; pre-XDR, MDR strains with additional resistance to either a fluoroquinolone or an injectable but not

both; XDR, MDR strains that are also resistant to any fluoroquinolone and to any of the three second-line injectables (amikacin, capreomycin, and

kanamycin).
aDetailed description of the strains with their drug-resistance phenotypes is given in Tables S4 and S5.
bThe lowest concentration of drug that inhibited growth ofmore than 90%of the bacterial populationwas considered to be theMIC90. TheMIC90 values

were determined using MGIT 960 system.
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on average, cells maintained high (>703 MIC) concentrations

of TAM16 (R6.5 mM when treated with 10 mM compound)

for up to 24 hr, indicating that the compound is freely perme-

able into the macrophage cytosol and can achieve high expo-

sure. Indeed, TAM16 showed good activity in Mtb infected

THP-1 cells.

Although TAM16 contains a Mannich substructure (C5OH C4

benzylamine scaffold), no adducts of TAM16 were formed in

mouse plasma and HLMs upon incubation with glutathione

and methoxylamine (Johansson et al., 2009) (Figures S3D and

S3E). Moreover, TAM16 was stable after 4 weeks of incubation

in vitro in low-pH buffered solutions (pH 3–5) at room tempera-

ture. Thus, taken together, the stability data suggests that the

Mannich substructure in TAM16 does not represent a signifi-

cant liability, consistent with previously reported stability of

the piperidine adducts of hydroxyindoles (Monti and Cas-

tillo, 1970).

TAM16 Efficacy in Murine TB Infection Models
We evaluated TAM16 for in vivo efficacy in mouse models of

acute and chronic TB infection. The TAM16 dosing regimens

used in these animal studies were based on the maximum toler-

ated dose and pharmacokinetic studies. We first tested the

in vivo activity of TAM16 using amousemodel of acute TB (Dutta

et al., 2014), representing a population of actively multiplying

Mtb in the host. BALB/c mice lungs were implanted with a very

high inoculum of Mtb (�4.4 log10 bacilli), which multiplied to a

peak lung burden of �7.7 log10 CFU (colony-forming unit)

14 days after infection. Treatment of the mice was initiated

2 weeks post-infection with once-daily oral dosing of TAM16

(200 mg/kg) or INH (10 mg/kg). After 2 weeks of treatment, the

TAM16 treated group showed a significant reduction in the

lung CFU to �6.8 log10, which was indistinguishable from INH

treatment, which reduced the lung CFU counts to �6.7 log10
(p > 0.05). Contrarily, all of the untreated control mice were mori-

bund 1 week after treatment initiation due to uncontrolled bacil-

lary growth in the lungs and were euthanized in accordance with

institutional animal care regulations (Figure 3A). Histopathology

of the mice post-treatment showed that TAM16 prevented the

development of characteristic lung lesions (Figure S5).

We next tested the in vivo activity of TAM16 in a chronic TB

infection model in which lungs of BALB/c mice were aerosol-in-

fected withMtb using low-dose inocula, and treatment was initi-

ated 4weeks later when a steady-state infectionwas established

at �7 log10 CFU per lung. After 4 weeks of treatment, mice

treated with a once-daily oral dose of TAM16 (300 mg/kg) for

5 days per week showed a significant reduction in lung CFU

counts by �0.9 log10 compared with the untreated control

mice (p = 0.01) (Figure 3B). TAM16 treatment also significantly

reduced the spleen bacterial burdens by�2.2 log10 CFU relative

to that of the untreated control group (p < 0.001). Mice receiving

INH (25mg/kg) for 4 weeks showed a decrease in CFU counts by

�1.1 log10 and �2.5 log10 in lungs and spleen, respectively,

which again was statistically indistinguishable from the activity

observed with TAM16 (p > 0.05) (Figure 3B).

Because of the synergy that was observed between TAM16

and RIF in the in vitro assays, we evaluated the drug combination

of TAM16 and RIF in a mouse model representing a chronic TB

infection. BALB/c mice were infected with a low-dose aerosol,

and treatment was initiated 4 weeks post-infection with the com-

bination of TAM16 (200 mg/kg) and RIF (10 mg/kg) in an 8-week

study, where the combination was dosed orally once daily for

5 days per week. After 4 weeks of treatment, the combination

of TAM16 and RIF resulted in a dramatic 2.54 log10 CFU reduc-

tion in the bacterial load in themice lungswhen compared to that

of the vehicle-only control (p < 0.001) (Figure 3C). We saw a

further reduction in bacterial load when the combination was

continued for an additional 4 weeks with an impressive overall

reduction of �3.9 log10 CFU in lungs over 8 weeks treatment

when compared to the untreated control (p < 0.001). This was

similar to the gold standard combination of INH and RIF that

showed an efficacy of �4.1 log10 CFU reduction (p > 0.05) (Fig-

ure 3C; Table S7). Moreover, the combination of TAM16 and RIF

was significantly more active than RIF alone, with an additional

decrease of �1.5 log10 CFU counts after 8 weeks of treatment

(p < 0.001). TAM16 as a single agent showed efficacy similar

Table 3. Physicochemical and Pharmacokinetic Properties

of TAM16

MW (g/mol) 380.4

cLogP 1.6

logD 1.7

Lipophilic ligand efficiency 5.1

H-bond donors 3

H-bond acceptors 4

TPSA (Å2) 86

pKa 9.95

Kinetic solubility (mM) 74

(phosphate buffer, pH 7.4)

Plasma protein binding (%): Mouse 73

Human 72

Intrinsic clearance in liver microsomes

(CLint) (mL/min/g liver): Mouse <0.5

Human <0.5

CYP inhibition No significant

inhibition

PK parameters:

Cmax (ng/mL) in plasma 444

Tmax (hr) 0.5

t1/2 (hr) in plasma 1.0

AUC0-24 (ng.min/mL) (po) 74,940

AUC0-24 (ng.min/mL) (iv) 79,369

Clearance (mL/min per kg) 37

Vss (L/kg) 4.2

Oral bioavailability (F) (%) 28

Pharmacokinetic parameters were determined after administration of

single oral (po) and intravenous (iv) doses of TAM16 at 10 mg/kg

and 3 mg/kg, respectively, in female BALB/c mouse. Cmax, maximum

concentration; Tmax, time to reach Cmax; t1/2, half-life; AUC, area under

the concentration curve; Vss, volume of distribution at steady state;

cLogP, calculated log(partition coefficient); Lipophilic ligand efficiency =

pIC50 � cLogP; TPSA, total polar surface area.

See also Figures S3 and S4 and Table S6.
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to RIF alone (CFU reduction of�1.9 log10 and�2.4 log10 in mice

lungs, respectively) after 8 weeks of treatment (p > 0.05). In this

study, no overt toxicity was observed in treated mice. Compan-

ion PK studies revealed a mean maximal drug concentration in

plasma (Cmax ± SD) of 6.21 ± 1.5 mg/mL and 6.30 ± 2.3 mg/mL

with trough concentrations of 1.91 ± 1.1 mg/mL and 1.58 ±

0.8 mg/mL for TAM16 30 min and 24 hr following oral administra-

tion alone, or 1 hr following prior RIF administration when

sampled at steady state (week 8 of dosing), respectively. Thus,

taken together, the efficacy data indicates that TAM16 has

potent in vivo activity equivalent to INH, which is the most bacte-

ricidal first-line TB drug in current use, and highlights its potential

for further pre-clinical development.

DISCUSSION

INH, an inhibitor of the mycolic acid synthesis, has been a main-

stay of TB therapy for decades. Although, in general, INH is well

tolerated, it has several limitations. Because it is a pro-drug

whose activation requires an Mtb enzyme that is not essential,

resistance arises frequently through loss-of-function mutations

in the activator KatG. Thus, a compound that targets mycolic

acid synthesis and is not a pro-drug, such as the Pks13-targeting

TAM16 developed in this study, should prove to be a better alter-

native to INH. Indeed, the frequency of resistance is about 100-

fold lower for TAM16 as compared to INH. Though several other

such compounds, such as InhA inhibitors, that do not require

activation have been described (Guardia et al., 2016; Manjuna-

tha et al., 2015; Pan and Tonge, 2012), none have advanced to

the point where they can easily be compared with INH in animal

studies, unlike TAM16.

TAM16 is a novel benzofuran class lead molecule with excel-

lent drug-like properties and favorable pharmacokinetic and

safety profiles. It exhibits potent in vivo efficacy in both acute

and chronicmouse TBmodels when administered orally as a sin-

gle dose, which is a highly desirable feature for a new TB thera-

peutic as it simplifies dosing regimen, encouraging patient

compliance. However, the primary advantages of TAM16 are

the novel target and the fact that it is not a pro-drug. This unique

modeof actionmeans that therewill benopre-existing resistance

in clinical strains. Our studies verify that TAM16 is potent against

multidrug-resistant and extensively drug-resistant Mtb strains.

One of the advantages of drugs that target mycobacterial

cell wall biosynthesis is their potential to combine with other an-

tibiotics to increase efficacy by improving their penetration. This

makes compounds such as TAM16, which probably selectively
Figure 3. Efficacy of TAM16 in Mouse Models of TB

(A) In vivo activity of TAM16 against acute TB infection in immunocom-

petent BALB/c mice. Data represent mean M. tuberculosis burden (log10

CFU) in the lungs of mice (n = 5 per time point) expressed as mean ± SD.

Week 0 indicates CFU counts in the lungs at treatment initiation (2 weeks

after infection). Drugs were administered via oral gavage 5 days/week

for 2 weeks. The mice in the untreated group were moribund after 3 weeks

of infection and were euthanized in accordance with institutional animal

care regulations. *p < 0.05 by Dunnett’s multiple comparison tests, as

compared to the untreated (vehicle-only) control group; ns, no statistical

significance.

(B) Efficacy of TAM16 in reducing M. tuberculosis burden in chronically in-

fected immunocompetent mice after 4 weeks of treatment. Treatment was

initiated 27 days after infection, and drugs were administered once daily via

oral gavage for 5 days/week for 4 weeks. Data show the bacterial loads (mean

log10 CFU ± SD) in the lungs and spleen of the infected mice (n = 5 per group).

*p < 0.05 and ***p < 0.001 by pairwise multiple comparison procedures (Tukey

test); ns, no statistical significance.

(C) Efficacy of TAM16 administered in combination with anti-TB drug rifam-

picin (RIF) in chronically infected BALB/c mice. Treatment was initiated

28 days after infection, and drugswere administered once daily via oral gavage

(5 d/wk) for 4 and 8 weeks. Data represent meanM. tuberculosis burden (log10
CFU) in the lungs of the infected mice (n = 6 for vehicle-only control group and

n = 7 for each treatment group) after 4 and 8 weeks of therapy (mean ± SEM).

In combination studies, TAM16 and isoniazid (INH) were administered 1 hr

following prior administration of RIF. Dotted horizontal line indicates the limit of

detection.

See also Figure S5 and Table S7.
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kills the most rapidly growing bacteria in the population, produc-

ing rather rapid clearance initially with a more modest effect later

in infection, very useful parts of a combination drug regimen.

TAM16 combineswell with RIF, a drug that kills different subpop-

ulations of bacteria, suggesting that it is also likely to synergize

with other drugs that have different modes of action. Indeed,

TAM16 also showed synergistic activity in combination with

other TB drugs like ATP synthesis inhibitor TMC207 and protein

synthesis inhibitor streptomycin. Thus, TAM16 has suitable attri-

butes for inclusion into either the current or any newly developed

combination therapy for TB treatment. Overall, the results pre-

sented here demonstrate that TAM16 represents a promising

candidate as a replacement of INH and validate Pks13 as a

drug target in Mtb.

Structure-guided drug development has proven to be a

powerful approach to producing new agents but has had limited

application in the process of developing new antimycobacterial

compounds (Lechartier et al., 2014; Zuniga et al., 2015). These

findings re-emphasize the utility of structure-guided approaches

for antimycobacterials when starting with compounds that have

good whole cell and low toxicity. Whole-genome sequencing of

resistant mutants for target identification can quickly provide a

detailed understanding of the mechanism of action of new com-

pounds with antibiotic activity as a path to turning these prom-

ising molecules into drugs.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

M. tuberculosis Johns Hopkins University H37Rv

BL21(DE3)pLysS Novagen Cat# 70236-3

M. tuberculosis H37Rv ATCC ATCC 27294

Clinical M. tuberculosis isolates, see Table S5 Stellenbosch University: in-house

culture bank

N/A

Clinical M. tuberculosis isolates, see Table S5 Strain Collection at Mycobacteriology

Laboratory of the Institute of Medical

Microbiology, University of Zurich

N/A

M. tuberculosis mc2-7000 Texas A&M University: in-house frozen

stock (Sambandamurthy et al., 2006)

N/A

Mycobacterium tuberculosis Erdman Trudeau Mycobacterial Culture Collection TMC#107

Chemicals, Peptides, and Recombinant Proteins

Phorbol 12-myristate 13-acetate Sigma-Aldrich Cat# P8139

D-Pantothenic acid Sigma-Aldrich Cat# P5155

Resazurin Sigma-Aldrich Cat# R7017

4-Methylumbelliferyl heptanoate (4-MUH) Sigma-Aldrich Cat# M2514

Ammonium sulfate Sigma-Aldrich Cat# A4418

Polypropylene glycol P-400 Sigma-Aldrich Cat# 81350

Fomblin Sigma-Aldrich Cat# 317950

Polyethylene glycol 400 (PEG 400) Hampton Research Cat# HR2-603

BTC-AM dye ThermoFisher Scientific Cat# B6791

Uridine di-phosphoglucuronic acid (UDPGA) Sigma-Aldrich Cat# U6751

b-Nicotinamide adenine dinucleotide 20-phosphate
reduced (NADPH)

Sigma-Aldrich Cat# N1630

b-Nicotinamide adenine dinucleotide (NADP) Sigma-Aldrich Cat# N3886

Propranolol Sigma-Aldrich Cat# PO884

Glucose-6-phosphate Dehydrogenase (from Baker’s

yeast S. cerevisiae)

Sigma-Aldrich Cat# G7877

Ethoxyresorufin (ER) Sigma-Aldrich Cat# E3763

3-Cyano-7-Ethoxycoumarin (CEC) Sigma-Aldrich Cat# UC455

Miconazole nitrate Sigma-Aldrich Cat# M3512

D-Glucose-6-phosphate sodium salt Sigma-Aldrich Cat# G7879

7-methoxy-4-(trifluoromethyl)-coumarin (MFC) Cypex Cat# CYP517

7-methoxy-4-(aminomethyl)-coumarin (MAMC) Cypex Cat# CYP515

Diethoxyfluorescein (DEF) Cypex Cat# CYP531

7-Benzyloxyquinoline (7BQ) Cypex Cat# CYP512

Benzoquinone TCI America Cat# B0089

ethyl 3-oxo-3-phenylpropanoate Combi-Blocks Cat# QA-0159

ethyl 3-(4-methoxyphenyl)-3-oxopropanoate TCI America Cat# M1380

Piperidine Sigma-Aldrich Cat# 411027

Methylamine solution Sigma-Aldrich Cat# 395056

Oxalyl chloride Sigma-Aldrich Cat# 221015

Copper(II) trifluoromethanesulfonate Sigma-Aldrich Cat# 283673

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

2,5-Dihydroxybenzaldehyde Combi-Blocks Cat# OR-1145

3-methoxy-5-methylphenol TCI America Cat# M0895

Palladium(II) acetate Sigma-Aldrich Cat# 205869

Boron tribromide Sigma-Aldrich Cat# 230367

Trifluoromethanesulfonic anhydride Sigma-Aldrich Cat# 176176

Diethyl azodicarboxylate solution Sigma-Aldrich Cat# 563110

Phenylmagnesium bromide Sigma-Aldrich Cat# 331376

ethyl 5-hydroxy-4-[(4-methyl-1-piperidinyl)methyl]-

2-phenyl-1-benzofuran-3-carboxylate (TAM1)

ChemBridge Corporation ID# 6238794

ethyl 5-hydroxy-4-[(3-methyl-1-piperidinyl)methyl]-

2-phenyl-1-benzofuran-3-carboxylate (TAM2)

ChemBridge Corporation ID# 6241075

ethyl 5-hydroxy-2-phenyl-4-(1-pyrrolidinylmethyl)-

1-benzofuran-3-carboxylate hydrochloride (TAM3)

ChemBridge Corporation ID# 6238866

ethyl 4-(1-azepanylmethyl)-5-hydroxy-2-phenyl-

1-benzofuran-3-carboxylate hydrochloride (TAM4)

ChemBridge Corporation ID# 6240697

ethyl 5-hydroxy-4-(4-morpholinylmethyl)-2-phenyl-

1-benzofuran-3-carboxylate (TAM5)

ChemBridge Corporation ID# 6240924

ethyl 4-[(dimethylamino)methyl]-5-hydroxy-

2-phenyl-1-benzofuran-3-carboxylate (TAM6)

ChemBridge Corporation ID# 5169001

Ethyl 5-hydroxy-2-phenylbenzofuran-

3-carboxylate (TAM7)

This paper N/A

Ethyl 4-benzyl-5-hydroxy-2-phenylbenzofuran-

3-carboxylate (TAM8)

This paper N/A

Ethyl 5-hydroxy-2-phenyl-4-(piperidin-1-ylmethyl)

benzofuran-3-carboxylate (TAM9)

This paper N/A

5-hydroxy-2-phenyl-4-(piperidin-1-ylmethyl)

benzofuran-3-carboxylic acid (TAM10)

This paper N/A

Ethyl 4-(cyclohexylmethyl)-5-hydroxy-2-

phenylbenzofuran-3-carboxylate (TAM11)

This paper N/A

5-hydroxy-N-methyl-2-phenyl-4-(piperidin-1-

ylmethyl)benzofuran-3-carboxamide (TAM12)

This paper N/A

Ethyl 5-hydroxy-2-(4-hydroxyphenyl)-4-(piperidin-

1-ylmethyl)benzofuran-3-carboxylate (TAM13)

This paper N/A

Ethyl 5-methoxy-2-phenyl-4-(piperidin-1-ylmethyl)

benzofuran-3-carboxylate (TAM14)

This paper N/A

Ethyl 2-phenyl-4-(piperidin-1-ylmethyl)benzofuran-

3-carboxylate (TAM15)

This paper N/A

5-hydroxy-2-(4-hydroxyphenyl)-N-methyl-

4-(piperidin-1-ylmethyl)benzofuran-3-

carboxamide (TAM16)

This paper N/A

Ethyl 5-hydroxy-2-(6-hydroxypyridin-3-yl)-

4-(piperidin-1-ylmethyl)benzofuran-3-

carboxylate (TAM17)

This paper N/A

2-(3-fluoro-4-hydroxyphenyl)-5-hydroxy-N-methyl-

4-(piperidin-1-ylmethyl)benzofuran-3-

carboxamide (TAM18)

This paper N/A

6-hydroxy-2-(4-hydroxyphenyl)-N-methyl-

4-(piperidin-1-ylmethyl)benzofuran-3-

carboxamide (TAM19)

This paper N/A

Ethyl 6-hydroxy-2-phenyl-4-(piperidin-1-ylmethyl)

benzofuran-3-carboxylate (TAM20)

This paper N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Ethyl 5-hydroxy-4-((3-(hydroxymethyl)piperidin-1-yl)

methyl)-2-phenylbenzofuran-3-carboxylate (TAM21)

This paper N/A

Ethyl 5-hydroxy-4-((2-(hydroxymethyl)piperidin-1-yl)

methyl)-2-phenylbenzofuran-3-carboxylate (TAM22)

This paper N/A

Ethyl 5-hydroxy-4-((3-(hydroxymethyl)piperidin-1-yl)

methyl)-2-(4-hydroxyphenyl)benzofuran-3-

carboxylate (TAM23)

This paper N/A

5-Hydroxy-4-((3-(hydroxymethyl)piperidin-1-yl)

methyl)-N-methyl-2-phenylbenzofuran-3-

carboxamide (TAM24)

This paper N/A

Critical Commercial Assays

PCR Mycoplasma Test kit Life Technologies Cat# 409010

QuikChange II Site-Directed Mutagenesis Kit Agilent Technologies Cat# 200523

Innovative Grade US Origin Mouse Plasma CD-1 Innovative Research Cat# IGMS-N

Mouse Microsomes (CD-1) Life Technologies Cat# MSMC-PL

Human liver microsomes (HLM) - Female CD1 Xenotech Lot# 910255

Human CYP1A2 + human CYP reductase Cypex Cat# CYP/EZ001

Human CYP2C9 + human CYP reductase + purified

human cytochrome b5

Cypex Cat# CYP/EZ037

Human CYP2C19 + human CYP reductase Cypex Cat# CYP/EZ008

Human CYP2D6 + human CYP reductase Cypex Cat# CYP/EZ007

Human CYP3A4 + human CYP reductase + purified

human cytochrome b5

Cypex Cat# CYP/EZ005

Membrane protein (control) Cypex Cat# CYP/EZ003

Safety Profiling AbbVie, IL, USA N/A

Deposited Data

Pks13-TE domain (apo) structure This paper PDB: 5V3W

Pks13-TE:TAM1 complex structure This paper PDB: 5V3X

Pks13-TE:TAM16 complex structure This paper PDB: 5V3Y

Pks13-TE:D1607N mutant structure This paper PDB: 5V3Z

Pks13-TE:TAM6 complex structure This paper PDB: 5V40

Pks13-TE:TAM5 complex structure This paper PDB: 5V41

Pks13-TE:TAM3 complex structure This paper PDB: 5V42

Experimental Models: Cell Lines

Human Dermal Fibroblast ATCC ATCC PCS-201-010

THP-1 cells ATCC ATCC TIB-202

hERG T-REx-CHO Cell line ThermoFisher Scientific Cat# K1237

Experimental Models: Organisms/Strains

Mouse: ND4 Swiss Webster outbred Envigo, Indianapolis, IN Strain code: 032

Mouse: BALB/c AnNCrl Charles River laboratories,

Wilmington, MA

Strain code: 028

Oligonucleotides

LIC Primer: wt Pks13-TE Forward: TACTTCCAAT

CCAATGCCCAGATCGATGGGTTCGTCCGCAC

This paper N/A

LIC Primer: wt Pks13-TE Reverse: TTATCCACTT

CCAATGTTATCACTGCTTGCCTACCTCACTTGTTCG

This paper N/A

Primer: Site directed mutagenesis Pks13-TE:D1607N

Forward: GAGGAGCTCGACAACGAGGGCCAGG

This paper N/A

Primer: Site directed mutagenesis Pks13-TE:D1607N

Reverse: CCTGGCCCTCGTTGTCGAGCTCCTC

This paper N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Primer: Site directed mutagenesis Pks13-TE:D1644G

Forward: CCGGGCGATCGGCACCGCCCAGA

This paper N/A

Primer: Site directed mutagenesis Pks13-TE:D1644G

Reverse: TCTGGGCGGTGCCGATCGCCCGG

This paper N/A

Recombinant DNA

Plasmid: pMCSG-19b Midwest Center for Structural

Genomics (http://bioinformatics.anl.

gov/mcsg/technologies/vectors.html)

N/A

Pks13-TE-pMCSG-19b This paper N/A

Pks13-TE:D1607N_pMCSG-19b This paper N/A

Pks13-TE:D1644G_pMCSG-19b This paper N/A

Software and Algorithms

Masslynx 4.1 Waters N/A

MetaboLynx Waters N/A

HKL2000 Otwinowski and Minor, 1997 N/A

CCP4 suite http://www.ccp4.ac.uk/ N/A

Phenix Suite Adams et al., 2010 N/A

UCSF Chimera Pettersen et al., 2004 N/A

Coot Emsley and Cowtan, 2004 N/A

PyMOL 1.4 Schrodinger, LLC N/A

Prism 4.0, 5.0 GraphPad Software N/A

IN Cell Investigator image analysis software for

IN CELL ANALYZER 2000

GE Life Sciences N/A

CompuSyn software http://www.combosyn.com/ N/A

SigmaPlot 11.0 Jandel Corporation N/A

CAVER 3.0 PyMOL plugin http://www.caver.cz N/A

Molsoft ICM-Pro 3.8 http://www.molsoft.com N/A

Other

Rapid Equilibrium Dialysis (RED) Device Single Use

Plate with Inserts, 8K MWCO

ThermoFisher Scientific Cat# 90006

HiLoad 16/600 Superdex 200 pg Column GE Life Sciences Cat# 28989335

Rifampin Sigma-Aldrich Cat# R3501-5G

Rifampicin Sigma-Aldrich Cat# R3502

Ethambutol Sigma-Aldrich Cat# E4630

Streptomycin Sigma-Aldrich Cat# S6501

Isoniazid Sigma-Aldrich Cat# I3377

Verapamil Sigma-Aldrich Cat# V4629

Penicillin-Streptomycin (10,000 U/mL Life technologies Cat# 15140122

DMEM, high glucose, GlutaMAX Supplement Life technologies Cat# 10566-016

Fetal Bovine Serum Corning Cat# 35-015-CV

Gentamycin GIBCO Cat# 15710064

Carbenicillin Caisson Labs Cat# C033-100GM

Chloramphenicol GoldBio Cat# C-105-100

Warfarin PESTANAL, analytical standard Sigma-Aldrich Cat# 45706

Tyloxapol Sigma-Aldrich Cat# T8671

BBL Middlebrook 7H11 Selective Agar Becton Dickinson Cat# 8801671

Difco Middlebrook 7H10 agar Becton Dickinson Cat# 262710

(Continued on next page)

Cell 170, 249–259.e1–e20, July 13, 2017 e4

http://bioinformatics.anl.gov/mcsg/technologies/vectors.html
http://bioinformatics.anl.gov/mcsg/technologies/vectors.html
http://www.ccp4.ac.uk/
http://www.combosyn.com/
http://www.caver.cz
http://www.molsoft.com


CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, James C.

Sacchettini (sacchett@tamu.edu). Texas A&M University requires that a material transfer agreement (MTA) be signed for transfer of

materials. Small amounts of compounds synthesized for this study will be made available as reference standards when a sufficient

supply is available.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal studies
All animal experiments described in this manuscript followed protocols approved by the respective Institutional Animal Care and Use

Committee’s at Colorado State University, Johns Hopkins University and Texas A&M University.

Pharmacokinetic studies in mice
Swiss-Webster female mice (�20 g each) (Envigo, Indianapolis, IN) were used in the PK study. The formulation of TAM16 was pre-

pared in 90% canola oil and 10%DMSO.Mice were dosed at 100mg/kg by oral gavage at 0 hr and 4 hr time points in 0.1 mL aliquots

to yield a final dose per day of 200 mg/kg. Three mice were used per time point. The mice were anesthetized with ketamine-xyalzine

and�0.1mL of blood was drawn for survival bleeds at 0.5, 1.5, 5 hr, time points, and�0.3 mL of blood was drawn for terminal bleeds

at 4, 8 and 12 hr time points. Bloodwas collected from the brachial region. The blood samples were centrifuged (5,000 x g, 15 min) for

plasma separation. 500 mL methanol containing 0.1% formic acid was then added to a 50 mL serum aliquot to precipitate the protein.

The methanol precipitation step was performed twice to ensure maximum extraction of TAM16 from the serum. After removing the

precipitate by centrifugation, the clear supernatant was evaporated to dryness. The dry samples were then reconstituted with 50 mL

methanol and subjected to LC-MS analysis on a micrOTOF-Q II mass spectrometer (Bruker Daltonics Inc.) hyphenated with an Agi-

lent 1200 Infinity series HPLC with temperature controlled autosampler and photodiode array detector. 2.1 X 100 mm Atlantis T3,

5 mm C18 HPLC column (Waters) was used in the analysis at a flow rate of 0.5 ml.min-1. The mobile phase consisted of water

with 0.1% formic acid as Solvent line A and acetonitrile with 0.1% formic acid as solvent line B. The gradient conditions were main-

tained as follows: 90% A, 10% B to 100% B in 8 min; 100%B held for 4 min; 100%B back to 90% A, 10% B in 2 min; 90% A, 10% B

held for 3min. The injection volume of the analyte was 10 mL andMSwas operated in the positivemodewith electrospray ionization at

source. Mass spectra were monitored in the range of (m/z) 50 to (m/z) 1000.

Efficacy studies in mice
BALB/c acute TB infection mouse model

For this study, mice (Charles River Labs, Wilmington, MA) were maintained under specific pathogen-free conditions and fed water

and chow ad libitum. For drug preparation, isoniazid (INH, Sigma) was dissolved in sterile distilled water. A dosing solution of 1mg/ml

was prepared weekly and kept at 4�C. TAM16 was suspended in vehicle of canola oil and 10% DMSO and stored at 4�C for up to

1 week. A total of 70 female BALB/c mice (7-8 weeks-old) were aerosol-infected with M. tuberculosis H37Rv using the Inhalation

Exposure System (Glas-Col Inc., Terre Haute, IN) calibrated to deliver �104 (high-inoculum) colony-forming units (CFU) per mouse

lung. After aerosol infection, mice were blindly randomized into treatment groups: no drug (negative control) and drug treated (pos-

itive control), and were treated daily via oral gavage administered in 0.2mL 5 days per week for 2 weeks at 200mg/kg once daily. Five

mice from each group were sacrificed on the day after infection, on the day of treatment initiation (Day 0), and on day 14 after treat-

ment to determine the numbers of CFU implanted in the lungs, pretreatment baseline CFU counts and theCFU counts after 14 days of

treatment, respectively. Animal body weights were recorded at the time of sacrifice. The lungs of sacrificed mice were homogenized

in 2.5 mL PBS. Lung homogenates were plated on selective 7H11 plates (containing cycloheximide (50 mg/ml), carbenicillin

(100 mg/ml), polymyxin B (200 U/ml), and trimethoprim (20 mg/ml)) for CFU enumeration. Statistical analysis was done on CFU

data derived from 3 to 5mice per group. Log-transformed CFUwere used to calculate means and standard deviations. Comparisons

of data among experimental groups were performed by Student’s t test. Group means were compared by one-way analysis of vari-

ance (ANOVA) with Dunnett’s post-test (Day 0 or untreated controls versus treatment groups) or Bonferroni comparison (all treatment

groups), using GraphPad Prism version 4 (GraphPad, San Diego, CA). Values of p < 0.05 were considered to be statistically

significant.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Difco Middlebrook 7H9 broth Becton Dickinson Cat# 271310

Middlebrook OADC enrichment Becton Dickinson Cat# 212351/212240

BACTEC MGIT 960 tubes (7 ml) Becton Dickinson Cat# 245122

Bedaquiline (TMC207) Advanced ChemBlocks Inc Cat# 10288, Lot# 10355
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BALB/c chronic TB infection mouse model

In this study, 6- to 8-week-old female specific-pathogen-free immunocompetent BALB/c mice (Charles River, Wilmington, MA) were

infected via a low-dose aerosol exposure toM. tuberculosis Erdman in aMiddlebrook aerosol generation device (Glas-Col Inc., Terre

Haute, IN). One day post aerosol infection, three mice were sacrificed to verify the uptake of an average of about 100 CFU of bacteria

per mouse. Following infection, the mice were randomly divided into treatment groups. Negative control mice remained untreated.

Positive control mice received INH (at 25mg/kg of bodyweight). Each group consisted of fivemice at each time point. Treatment was

started day 27 post aerosol and continued for 4 weeks. Five infected mice were killed at the start of treatment as pretreatment con-

trols. Drugs were administered in canola oil, 5 days per week by oral gavage. To determine drug efficacies, mice from each treatment

group were sacrificed after 4 weeks of treatment. The mice were humanely euthanized by CO2 inhalation. The spleens and left lung

lobes were aseptically removed and disrupted in a tissue homogenizer. The number of viable organisms was determined by serial

dilution of the homogenates on nutrient Middlebrook 7H11 agar plates (GIBCO BRL, Gaithersburg, MD). The plates were incubated

at 37�C in ambient air for 4 weeks prior to determine the total number of culturable mycobacteria per organ. For statistical analysis,

the number of culturable mycobacteria were converted to logarithms, which were then evaluated by a one-way analysis of variance,

followed by a multiple-comparison analysis of variance by a one-way Tukey test (SigmaPlot software program). Differences were

considered significant at the 95% level of confidence.

Combination studies in mouse model of chronic TB

Six- to 8-week-old female specific-pathogen-free immunocompetent BALB/c (Charles River, Wilmington, MA) were infected via a

low-dose aerosol exposure to M. tuberculosis Erdman (�50-100 bacilli/mouse) using the Glas-Col Inhalation Exposure System.

One day post aerosol infection, five mice were sacrificed to determine bacterial uptake. Following infection, the mice were randomly

divided into treatment groups of six mice each. Negative control mice remained untreated. At Day 28 post-infection 6 mice were

sacrificed to determine bacterial load in the lungs at the start of therapy. Therapy administered via oral gavage, was started day

28 post-aerosol infection and continued for 4 and 8 weeks. Drugs were administered by gavage daily, for 5 days a week (Mon-

Fri), in a volume of 200 ml/animal/drug. For animals receiving two drugs, RIF was dosed first and then at least 1 hr later, the second

drug was administered. To determine drug efficacies, six mice from each group (untreated, vehicle, TAM16, RIF, INH and combina-

tion treatment mice) were sacrificed after 4 and 8 weeks of treatment following a three day drug washout period after the last day of

dosing. For the companion plasma PK studies (plasma collected at both Cmax/Cmin), test bleeds were performed via the submandib-

ular route using a GoldenRod lancet during last week of treatment (week 8) from n = 3 mice from TAM16 only and TAM16+RIF treat-

ment groups. For statistical analysis, the viable CFU counts were converted to logarithms, which were then evaluated by a one-way

ANOVA followed by a pairwisemultiple comparison using the Dunnett’s test (SigmaPlot software program). Differences were consid-

ered significant at the 95% level of confidence.

Cell lines and bacterial strains
Human Dermal Fibroblast (HDF) cells were purchased from ATCC (catalog number PCS-201-010) and were cultured in DMEM

(Lonza) media supplemented with 10% fetal bovine serum (Lonza) and penicillin/streptomycin (Lonza). THP-1 cells were purchased

from ATCC (catalog number TIB-202) and were differentiated with PMA (100 nM) for 3 days prior to infection studies. For assaying

hERG activity, an inducible hERG T-RExTM-CHOCell line was purchased by AbbVie from ThermoFisher (catalog number K1237). Cell

lines obtained fromATCCwere tested formycoplasma contamination by PCRMycoplasma test kit (MDBioproducts). Purchased cell

lines were not further authenticated.

BL21(DE3)pLysS competent E. coli cells were fromNovagen (catalog number 70236-3).M. tuberculosis mc27000 (Sambandamur-

thy et al., 2006) was obtained from in-house frozen stock (�80�C) at Texas A&MUniversity. To obtain starter culture, a 1mL aliquot of

frozen cells was thawed and cultured in 7H9media supplemented with OADC (Middlebrook), 0.05% Tyloxapol (Sigma), and 25 mg/ml

pantothenate for 6-7 days to an OD600 of 1–1.5. Clinical M. tuberculosis isolates were selected from the culture collections at the

Department of Molecular Biology and Human Genetics, Stellenbosch University, South Africa, and at the Mycobacteriology Labo-

ratory of the Institute of Medical Microbiology, University of Zurich, Switzerland (for a list of strains and mutations see Table S5).

The identity of the isolates was determined by IS6110 restriction fragment length polymorphism (van Embden et al., 1993) and their

phylogenetic lineages were assigned by spoligotyping (Kamerbeek et al., 1997; Streicher et al., 2007). Whole genome sequencing

showed that all of the drug-susceptible isolates lacked high confidence resistant markers which suggests susceptibility against

the conventional first- and second- line drugs.

METHOD DETAILS

Cloning and overexpression of Mtb Pks13 TE domain constructs
The TE domain construct corresponding to the predicted TE domain in Mtb pks13 gene (Rv3800c) was made by PCR from the Mtb

H37Rv genomic DNA as the template (forward primer: 50 – TAC TTC CAA TCC AAT GCCCAG ATCGATGGG TTCGTC CGC AC – 30,
reverse primer: 50 – TTA TCC ACT TCC AAT GTT ATC ACT GCT TGC CTA CCT CAC TTG TTC G – 30). The amplified DNA fragments
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were incorporated into the pMCSG-19b vector by ligation independent cloning (LIC) to yield TEV protease cleavable N-terminal His6-

tagged TE domain construct (Donnelly et al., 2006). The Pks13-TE-pMCSG-19b vector was transformed into E. coliBL21(DE3)pLysS

cells (Novagen) and the transformed cells were grown at 37�C in LB media containing carbenicillin (100 mg/ml) and chloramphenicol

(34 mg/ml) to an OD600 of 0.6. Expression of TE construct was induced with 0.5 mM IPTG, and cells were harvested after 16 hr of

growth at 20�C. The D1607N and D1644G mutants of Pks13 TE domain were constructed using the QuikChange II site-directed

mutagenesis kit (Agilent Technologies). The mutations were confirmed by DNA sequencing. Mutant plasmids were transformed

into E. coli BL21(DE3)pLysS cells, and mutant proteins were expressed by induction with 0.5 mM IPTG at 20�C for 18 hr.

Purification of Pks13 TE domain
The harvested cells were resuspended in the lysis buffer (50 mM Tris-HCl pH 8.0, 0.5 M NaCl, 10% (v/v) glycerol, 1 mM b-mercap-

toethanol (BME) andDNase) and lysed by French press. The resulting cell extract was clarified by centrifugation (15,000 x g) for 1 hr at

4�C. The cleared supernatant was loaded onto aNi-affinity column and theHis-tagged TE domain constructs were elutedwith a linear

gradient of 10-250 mM imidazole in 20 mM Tris-HCl, pH 8.0 and 0.5 M NaCl. The peak fractions were pooled and the His-tag was

cleaved by overnight incubation with TEV protease in dialysis buffer (20 mM Tris-HCl pH 8.0, 10% (v/v) glycerol and 1 mM DTT). The

TEV cleaved protein was passed through Ni-column to remove any uncleaved His-tagged protein using 20mM Tris-HCl (pH 8.0) with

100mMNaCl and 1mMBME. His-tag cleaved protein eluted in the flow-through and was concentrated for loading onto a Superdex-

200 gel filtration column (GE Healthcare). The 283 residue long TE domain starting from residue 1451 in full length Pks13 (referred to

as Pks13-TE in this paper) eluted under a single peak as a monomer (�32 kDa) from the gel filtration column and was > 95% pure as

observed by SDS-PAGE. The purified protein was concentrated to 20-25 mg/ml, flash-frozen and stored at �80�C. The TE domain

mutants were purified using the same protocol as for the wild-type Pks13-TE domain constructs. Both the mutants and the wt

Pks13-TE domain protein constructs have the amino acids SNA from the TEV cleavage site appended to the N terminus.

Crystallization and soaking with ligands
Initial screening for crystallization conditions for the Pks13-TE domain was done using sitting drop method using 1 mL of purified pro-

tein (15-20 mg/ml) and 1 mL of crystallization buffer from the well solution. The Pks13-TE crystals were obtained in crystallization

buffer containing 0.1 M Tris-HCl, pH 8.5 and 2.0-1.8 M ammonium sulfate as precipitant. Crystals were further optimized by using

polypropylene glycol P-400 as an additive at 2%–5% (v/v) in the original condition. To obtain Pks13-TE-inhibitor complex crystals,

soaking of the inhibitors was done by transferring apo-Pks13-TE crystals into a drop consisting of 0.1 M Tris-HCl, pH 8.5 and 2-2.2 M

ammonium sulfate with 1-2.5 mM inhibitor added from a DMSO stock keeping the final DMSO concentration at < 5%, and incubated

at 18�C for 4-48 hr. Crystals of the Pks13-TE:D1607Nmutant were obtained by sitting dropmethod at 18�C. The crystallization drops

contained an equal volume of the protein solution (15-20mg/ml) andmother liquor (0.1MHEPES, pH 7.5, 2%–4% (v/v) PEG 400, and

1.8-2 M ammonium sulfate), and the diffraction quality crystals were obtained within 2 weeks.

Data collection and processing
For diffraction data collection the crystals were cryo-protected using Fomblin (Sigma) and flash frozen in liquid nitrogen. High reso-

lution data was collected at wavelengths of 0.98 – 1.03 Å on the beamlines 19-ID and 23-ID at the Advanced Photon Source (APS) of

the Argonne National Laboratory, Chicago, IL, USA. All the datasets were processed and scaled with HKL2000 (Otwinowski and Mi-

nor, 1997). Analysis of the integrated and scaled data by Xprep (Sheldrick, 2008) indicated that Pks13-TE crystallized in P21212 space

group. Solvent content analysis in CCP4 suite indicated the presence of two molecules (VM 2.16, VS 43.2%) in the asymmetric unit

(Matthews, 1968).

Determination of Pks13-TE structures and model refinement
The structure of the Pks13-TE domain was solved by molecular replacement method (MR) using E. coli EntF (PDB: 3tej) structure, as

search model. A single MR solution was obtained using Phenix AutoMR (Adams et al., 2010) which was input into the AutoBuild

wizard to generate the initial model for apo-Pks13-TE. The initial model was improved by further manual rebuilding in COOT (Emsley

and Cowtan, 2004). The final model was obtained after iterative cycles of model building and Phenix refinement with simulated

annealing yielding a 1.72 Å resolution apo-Pks13-TE model with Rcryst of 16.9% and an Rfree of 20.1% with good stereochemistry

(Table S2). The final refined apo-model has two chains, designated A and B, a fragment of additive PPG P400 and 471 water mol-

ecules in the asymmetric unit. The crystal structures Pks13-TE-inhibitor complex structures, as well as the D1607Nmutant structures

were refined with simulated annealing (start temperature 5000 K, Phenix). Inspection of electron density maps showed clear jFo-Fcj
positive difference density for the ligands which were fit into the density using Ligandfit routine in Phenix (Terwilliger et al., 2006). The

ligand model and geometry restraint files were created in ELBOWBUILDER of the Phenix suite (Moriarty et al., 2009). Iterative cycles

of model building and NCS-restrained maximum likelihood refinement with simulated annealing yielded high quality models for

Pks13-TE-inhibitor complexes (Tables S2 and S3). In all of the structures > 98% of residues are placed in the favored region of

the Ramachandran plot (MolProbity, Chen et al., 2010). Figures of the structures were made with UCSF Chimera package (Pettersen
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et al., 2004) and PyMOL Molecular Graphics System version 1.4.1 (Schrodinger, LLC). Structural analysis of Apo Pks13-TE for the

identification of tunnels and channels was done using CAVER 3.0 PyMol plugin (Chovancova et al., 2012). Electrostatic surface

potentials were calculated using APBS (Baker et al., 2001) and displayed using the APBS plugin for PyMOL. Atomic coordinates

and structure factors for the reported crystal structures (Tables S2 and S3) have been deposited with the Protein Data Bank under

accession codes: PDB: 5V3W (Apo Pks13-TE), PDB: 5V3X (Pks13-TE:TAM1), PDB: 5V3Y (Pks13-TE:TAM16), PDB: 5V3Z (Pks13-

TE(D1607N)), PDB: 5V40 (Pks13-TE:TAM6), PDB: 5V41 (Pks13-TE:TAM5), and PDB: 5V42 (Pks13-TE:TAM3).

Enzyme assay
Activity of Pks13-TE was assessed using 4-methylumbelliferyl heptanoate (4-MUH, Sigma) as a fluorogenic substrate in a 96-well

plate format (Richardson and Smith, 2007). To make initial velocity measurements, Pks13-TE (1 mM) in 0.1 M Tris-HCl, pH 7 buffer

was incubated with different concentrations of 4-MUH (2-150 mM in DMSO) in a 100 mL reaction volume, and the fluorescence of

the hydrolyzed product 4-methylumbelliferone was read (excitation at 355 nm and emission at 460 nm) (PolarStar Omega plate

reader BMG Labtech) at 5-10 min intervals over 80-120 min. The reaction rate was observed to be linear in the measured range.

4-MUH in buffer alone was included as a control to quantify its background hydrolysis. Data points were plotted as an average of

triplicates and each experiment was repeated twice independently. The initial velocity data was curve fit to Michaelis-Menten equa-

tion by nonlinear regression using Prism software (GraphPad) to determine the kinetic parameters Km and Vmax. The assay and data

analysis for Pks13-TEmutants was done the same way as that for the wild-type protein with the 4-MUH concentration varying from 2

to 300 mM.

IC50 determination
To determine the potency of TAM1 and its analogs against wt Pks13-TE, the compounds were tested at concentrations ranging from

0.012 to 20 mM in a 96-well plate format. The reaction mix contained 0.1 mMPks13-TE in 0.1M Tris-HCl, pH 7 buffer with 1 mL of each

dilution of the compound or DMSO in a total volume of 99 mL. The reaction was initiated by addition of 1 mL of 2 mM 4-MUH in DMSO

(20 mM final concentration) to the reaction mix. Initial velocity data was obtained by monitoring increase in the fluorescence due to

hydrolysis of the substrate using PolarStar Omega plate reader at 10 min intervals over 110 min. The data points were collected in

triplicate and the averaged value was used to generate concentration-response plots for TAM1 and its analogs. The IC50 value for

each compoundwas obtained by nonlinear regression curve fitting of a four-parameter variable slope equation to the dose-response

data using Prism software. The IC50 values of TAM1 for Pks13-TEmutants were determined in the sameway as that for wt Pks13-TE,

using inhibitor concentration range of 0.04 to 40 mM.

Whole cell activity and cytotoxicity testing
Whole cell testing for determining MIC was done using Alamar blue assay in 96-well plates (Franzblau et al., 1998). Mtb mc2-7000

cells were grown to an OD600 of 1–1.5. The cells were then diluted into testing media (7H9 media with 0.2% dextrose, 0.085%

NaCl, 0.05% Tyloxapol, and 25 mg/ml pantothenate) to an OD600 of 0.01 and dispensed into testing plates at 196 mL per well.

Then the compounds were added (4 mL) as a 2-fold serial dilution in DMSO (2% DMSO final in each well). The test plates also

had a DMSO only control and a Rifampicin control. The plates were incubated with shaking at 37�C for 6 days and then stained

with resazurin (Sigma) for an additional 2 days at 37�C. After staining the fluorescence of reduced resazurin was read (lEx =

544 nm, lEm = 590 nm) using PolarStar Omega plate reader. The fluorescence data were plotted as percent growth inhibition against

the compound concentration and curve fitting was done by nonlinear regression using Prism software. Minimum inhibitory concen-

tration (MIC) values, defined as the concentration giving 50% growth inhibition, were determined from the fitted curves.

Compounds were tested for toxicity by the Human Dermal Fibroblast (HDF) cytotoxicity assay. The cells were cultured in DMEM

(Lonza) media supplemented with 10% fetal bovine serum (Lonza) and penicillin/streptomycin (Lonza). For setting the cytotoxicity

assay, compound stocks were serially diluted starting from the highest concentration of 100 mL in phosphate buffered saline

(PBS) plus 10% DMSO. On the day of assay, HDF cells were trypsinized, counted and resuspended at a concentration of 64,000

cells/ml in the media. Cells were plated, overlaid with the compound serial dilutions and incubated at 37�C. After 48 hr, resazurin

dye was added and the assay plates were cultured for another 24 hr. The next day the absorbance of the resazurin was measured

on a microplate reader (BMG Labtech) to assess cell death.

THP-1 Drug Efficacy Assay
THP-1 monocytes were differentiated with PMA (100nM) for 3 days prior to infection and seeded at 40k cells/well in a 96-well dish

coated with 0.1% gelatin.Mtb mc27000 cells constitutively expressing fluorescent reporter mCherry were incubated with the THP-1

for 2 hr, washed gently, and incubated with gentamycin (10 mg/mL) for 2 hr to kill extracellularMtbmc27000. Cells were then washed

and incubated with drug (1% DMSO final). Fluorescence was measured on days 0 and 5 post infection using a GE IN Cell Analyzer

2000 at 20x magnification and analyzed using the complementary GE software suite. Fold change in fluorescence was normalized to

rifabutin (10 mM) as the positive control. All experiments were performed with technical triplicates and were repeated six times

independently.
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Isolation of resistant mutants and whole-genome sequencing
For the isolation of TAM16 resistant mutants, �109 Mtb mc27000 cells were plated onto replicate 7H10 plates containing either

0.9 mM (10x MIC) or 1.8 mM (20x MIC) of TAM16. In addition, serial dilutions ofMtb mc27000 culture were plated out on 7H10 plates

containing no TAM16. Plates were screened for the appearance of resistant mutants after 3-4 weeks of incubation at 37�C, and the

frequencies of resistance were determined by dividing the CFUs on TAM16 containing plates by the CFUs on TAM16-free plates.

Genomic DNA from the mutants was extracted by CTAB-lysozyme method as described previously (Larsen et al., 2007) and sub-

jected to whole-genome sequencing for identification of single nucleotide polymorphisms (Ioerger et al., 2013) .

In vitro activity of compounds against clinical M. tuberculosis isolates
The Mycobacterial Growth Indicator Tube drug susceptibility testing system (MGIT 960 DST) was used to determine the MICs of

TAM16 against drug-susceptible and drug-resistant clinical M. tuberculosis isolates with diverse genetic background.

MGIT DST at University of Zurich

Drug susceptibility was tested using the proportion method and MGIT equipped with EpiCenter TB eXiST as described previously

(Springer et al., 2009). In brief, bacterial suspensions were prepared from MGIT subcultures. TAM16 was dissolved in DMSO and

two-fold dilution series in DMSO were prepared. 0.08 mL of each drug dilution was inoculated into the MGIT vial (final DMSO con-

centration 1%) together with 0.5 mL of the bacterial suspension. For preparation of the drug-free growth control tube, the bacterial

suspension was diluted 1:100 with sterile saline solution, and then 0.5 mL was inoculated into the MGIT vial together with 0.08 mL

DMSO. Results were interpreted as follows: at the time the growth unit (GU) value for the drug-free control was > 400, the strain was

categorized as susceptible when the GU of the drug-containing tube was < 100 and as resistant, if the GU was R 100. The MIC of

each strain was defined at the lowest drug concentration that was categorized as sensitive per the definition above. The epidemio-

logical cut-off (ECOFF) value is the MIC value identifying the upper limit for the wild-type type-population.

MGIT DST at Stellenbosch University

Bacterial suspensions were prepared from frozen stock (�80�C) in MGIT 960 medium. These cultures were then sub-cultured and

grown at 37�C for 2 additional days after the MGIT tube became positive before they were used as inocula (�1 3 105 CFU/ml). The

compounds were dissolved in 100% DMSO to obtain stock solutions of 1680 mM. Stock solutions were further diluted (1:20) to a

concentration of 84 mM in 50% DMSO followed by serial 2-fold dilutions ranging from 84 mM to 1.3 mM. From each dilution,

0.1 mL was transferred into MGIT tubes containing 7.0 mL modified Middlebrook 7H9 broth base supplemented with 0.8 mL

OADC. The tubes were then inoculated with 0.5 mL of the test organisms for final 2-fold drug concentrations ranging from 1.0 to

0.015mM. A drug-free 1:100 diluted inoculumwas included per drug set as control to indicate 1%growth according to the proportion

method. Results were based on a threshold growth unit (GU) reading of 400 by the drug-free control at 37�C in MGIT 960. Drug-con-

taining tubeswith GU values ofR 100 at the timewhen the drug-free control reach a value of 400were considered resistant and those

with values < 100 were recorded as susceptible. The MIC was defined as the lowest drug concentration that inhibits growth of more

than 99% of the bacterial inoculum.

In vitro synergy evaluation
TAM16 was evaluated in two-drug combination studies for interactions with INH, RIF and EMB in vitro againstMtbmc27000 by com-

bination index (CI) method (Chou, 2006). Briefly, TAM16 was combined at a constant ratio of 1:3; 1:0.5 and 1:30 with INH, RIF and

EMB, respectively, based on the ratio of theMICs of the individual drugs to TAM16 to obtain equipotency combination ratios, and a 2-

fold dilution series from the mixtures was prepared in DMSO. The dilution series of each drug combination as well as the serial di-

lutions of individual drugs in the combination were then tested in the same 96-well assay plate to obtain dose response data. Frac-

tional inhibition was calculated by dividing the fluorescence data from treatments by the fluorescence from the DMSO only control

wells. The CI and dose-reduction index (DRI) were calculated from the dose response data using CompuSyn software (http://www.

combosyn.com) for determining themode of interaction with CI < 1, CI = 1 andCI > 1 indicating synergistic, additive, and antagonistic

interactions, respectively.

Kinetic solubility determination
The procedure for determining kinetic solubility of Pks13-TE inhibitors was derived andmodified frommethods described previously

(Alelyunas et al., 2009). A 10 mM stock solution of TAM16 was prepared in 100% DMSO. 5 mL of the stock solution was added to

495 mL of sodium phosphate buffer (pH 7.4) taken in the wells of a 2 mL volume deep 96-well polypropylene plate (USA Scientific)

to get a final concentration of TAM16 of 100 mM and containing 1% final DMSO concentration. A small stir bar was placed in the

well and the plate was left on a stir plate with constant stirring for 24 hr at 25�C. At the end of the 24 hr the plate was centrifuged

at 1,000 x g to precipitate any un-dissolved material. The supernatant solution was diluted 10-fold in sodium phosphate buffer

(pH 7.4) and an aliquot was analyzed on the LC-MS as described under PK studies. TAM16 dissolved in methanol at 10 mM concen-

tration was injected into the LC-MS and used as a single point calibration to estimate the concentration of TAM16 in the aqueous

solution.
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Plasma protein binding
Protein binding of TAM16 in mice plasma was determined using a Rapid Equilibrium Dialysis (RED) kit (ThermoFisher Scientific) with

LC-MS analysis. TAM16 (10 mg/mL) and mice plasma with 1% DMSO were added to one side of the single-use RED plate dialysis

chamber having an 8 kDMWcutoff membrane. PBSwas added to the other side of themembrane. The plate was sealed and left on a

shaker at 250 rpm in a 37�C incubator. After 5 hr of dialysis a 50 mL aliquot was collected from both sides of themembrane. 50 mL PBS

was added to the plasma sample and 50 mL of plasma was added to the PBS sample in order to minimize matrix effect. Then 200 mL

acetonitrile containing 1 mg/ml warfarin (internal standard) was added to precipitate the protein. The sample was mixed well and

centrifuged. The clear supernatant was separated from the precipitate and 200 mL water containing 0.1% formic acid was added

to the supernatant. 10 mL of the sample was used for LC-MS analysis as described above. The experiment was performed in

triplicate.

Calculation of plasma protein binding

% bound =

�
Pl � Bu

Pl

�
3100

%unbound = 100�%bound

Where,

Pl = Ratio of mass intensities of TAM16 and Warfarin (Internal Standard) determined on the plasma side of the membrane.

Bu = Ratio of mass intensities of TAM16 and Warfarin (Internal Standard) determined on the buffer (PBS) side of the membrane.

Microsomal stability assay
20mg/mL stock solution of mousemicrosome S9 fractions (Life Technologies) were diluted to a 0.55mg/mL working stock in 50mM

potassium phosphate buffer (pH 7.4). 0.5 mM final concentration of the compound was used. Verapamil was used as a control drug

molecule to validate the assay. The reaction was started by adding 1 mM (final concentration) of freshly prepared NADPH solution.

Two negative controls were used; microsomes inactivated by heating at 55�C for 10 min in a water bath, and phosphate buffer in the

place of NADPH. Aliquots were removed from this reaction mix at time intervals of 0, 3, 6, 9, 15, 30, 45 and 60 min. The aliquots were

added to vials containing 37% acetonitrile, water and an internal standard (0.1 mg/mL warfarin). The mixture was centrifuged to re-

move precipitated protein and the clear supernatant solution was evaporated to dryness. The dry sample vials were reconstituted

with 50 mL methanol and used for LC-MS analysis as described in PK studies section.

Calculation of Intrinsic Clearance

Ratio of themass intensities of TAM16 and the internal standard (Warfarin) were then plotted to fit an exponential decay curve and the

rate constant (k) was derived from the curve. Intrinsic clearance was then calculated using the following equation:

CLi
�
ml:min�1:g�1 liver

�
= k3V 3Microsomal protein yield

Where,

CLi = Intrinsic Clearance

k = rate constant

V = incubation volume.mg-1 protein added = 1 3 0.5�1 = 2 ml.mg-1 protein

Microsomal protein yield is a standard used for all species = 52.5 mg protein.g-1 liver.

Physicochemical properties calculations
Physicochemical properties (clogP, logD, TPSA and pKa) were calculated using ChemAxon chemistry engine as implemented on the

Collaborative Drug Discovery web portal (www.collaborativedrug.com) and are summarized in Table 3.

Glutathione (GSH) and methoxylamine (MA) trapping
Metabolic stability of TAM16 was assessed following incubations with human liver microsomes (HLMs) (20 mg/mL, supplied by Xen-

otech as a pooled batch of 50 donors). The incubations were performed in amedium containing 0.05Mphosphate buffer (pH 7.4) with

TAM16 at a final concentration of 10 mM in the presence of 0.5mg/mLmicrosomal protein, 5mMGSH/MA and aNADPH regenerating

system (including 2.3 mM Glucose-6-Phosphate, 1.8 mM NADP, and 0.5 U/mL glucose 6-phosphate dehydrogenase in 2% (w/v)

sodium bicarbonate). Positive controls included Clozapine and 17a-ethynylestradiol (EE) for GSH trapping and Amodiaquine for

MA trapping at a final concentration of 5 mM. A ‘no compound control’ replacing TAM16/positive controls with DMSO was also

included. Samples prepared in 96-plates were incubated on a shaking water bath/incubator at 37�C for 60-90 min and after incuba-

tion, reactions were stopped by adding acetonitrile (analytical grade). The incubation mixtures were then centrifuged at 2800 rpm for
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10 min at 4�C. A 150 mL aliquot of supernatant was added to 150 mL water before analysis by UPLC-MS/MS (Waters Acquity UPLC

with DAD andWaters Xevo Q-TOF). Chromatography was performed on a Waters BEH C18 (503 2.1mm 1.7mm) column at a flow of

0.5 mL/min with an injection volume of 5 mL. Detection of metabolites was performed by analysis with Metabolynx XS software (Wa-

ters) and bymanual data searching. Analysis of positive controls was used to ensure that the assay was functional. Metabolic stability

of TAM16 in mouse plasma was assessed in the same manner as that described for HLMs.

Assessment of glucuronide metabolites
Incubations were performed with addition of 5 mL TAM16 or positive control propranolol (from a stock solution of 0.5 M) to 450 mL of

HLMs (1.11 mg/mL) in 0.05 M phosphate buffer (pH 7.4) containing 45 mL of cofactor uridine di-phosphoglucuronic acid (UDPGA) or

UDPGA/NADPH added to wells of a 96 deep-well (2 mL) incubation plate. The samples were incubated at 37�C and 50 mL aliquots

from incubations were removed at 0, 60 and 120 min after addition of the test compounds for analysis by UPLC-MS/MS. Chroma-

tography was performed on aWaters BEHC18 (503 2.1mm1.7mm) column heated at 40�Cwith a flow of 0.5mL/min and an injection

volume of 2 mL. Processing of samples was performed either by MetaboLynx software (Waters), setting each compound at t = 0 min

to Control, or by manual processing of the data. Initially, the positive control (propranolol) was analyzed to ensure that glucuronide

conjugates were formed.

Safety profiling
Cytochromes P450 (CYP) inhibition assays

CYP inhibition potential of TAM16 toward themajor human isoforms CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 was deter-

mined using individually expressed CYP enzymes and known fluorescent probe substrates. Human EasyCYP bactosomes

(1 nmol/mL, 10 mg/mL) derived from E.coli were supplied by Cypex. Incubation mix (220 mL) containing expressed CYP enzyme

and probe substrate in 0.05M potassium phosphate buffer (pH 7.4) was added to each well of 96-well plate and place onto a ther-

momixer kept at 37�C. To this incubation plate, 5 mL of the serial dilution of the compounds was added, mixed well and the plate was

incubated for at least 5 min at 37�C. Miconazole was included as the positive control. After incubation, 25 mL of NADPH regenerating

system solution was added to each well of the incubation plate and measurement of fluorescent product was started immediately

using the BMGPherastar spectrophotometer with appropriate parameters (Table S6). Eachwell wasmeasured for production of fluo-

rescent metabolite every min for 10 min. The data analysis was done using Xcel Fit to calculate the rate of fluorescence units per min

as a % of the average rate of the solvent control wells. The % of solvent control values were then plotted against the concentration

range and IC50 value were determined by nonlinear regression fitting of the following 4 parameter logistic equation,

y =Range
��
1+ ðx=IC50Þs

�
+Background

hERG activity assessment

The potential of TAM16 to inhibit the human cardiac hERG/IKr potassium channel functional activity was measured in an inducible

hERG T-RExTM-CHO Cell line (ThermoFisher) using thallium influx as a surrogate indicator of potassium ion channel activity

(Schmalhofer et al., 2010) at AbbVie, USA. Thallium enhances the fluorescent signal of BTC-AM dye (ThermoFisher). Cells were

loaded with the dye for 90 min in a low potassium buffer, dye removed and compound added to the cells in a high potassium buffer

in a 6 pt. dose response. After 30min incubation with compound, channel activity was recorded upon addition of thallium buffer using

a Tetra plate reader. The slope of the kinetic read was used to calculate channel activity.

Broad panel activity screening

Safety profiling of TAM16 for assessment of off-target interactions was performed at AbbVie, USA. The compound was evaluated

across a panel of 21 liability targets (39 functional assays) which included cell based GPCRs and ion channels in both agonist

and antagonist readout, and biochemical functional assays for nuclear hormone receptors and phosphodiesterases. The IC50 results

were greater than 10 mM for all assays.

Ames mutagenicity assay

The two-strain Ames assay was a six-well modification of the standard Ames Petri plate incorporation test, reducing the volumes of

reagents for the smaller size well. Salmonella strains TA98 and TA100 were exposed up to 1000 mg/well under conditions with and

without Aroclor 1254-induced rat liver S9.

Chemical synthesis
Materials and general methods

TAM1 and its structural analogs TAM2-6 were purchased from a commercial vendor (ChemBridge Corporation, San Diego, CA). For

the synthesis of analogs TAM7-24, all reagents and solvents used were reagent, analytical or HPLC grade. Anhydrous acetonitrile,

diethyl ether, dichloromethane, benzene, toluene and N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), tetrahydrofuran

(THF) and all other solvents and reagents were purchased from commercial suppliers (Sigma-Aldrich, EMD,AK Scientific, Alfa Aesar,

Acros Organics, Combiblocks, Oakwoods, etc.). Thin-layer chromatography (TLC) was performed on E. Merck silica gel 60-F-254

plates and spots were visualized with UV light. Flash column chromatography was performed using 230–400 mesh silica gels

(VWR). 1H NMR) and 13C NMR spectra were recorded in DMSO-d6, CD3OD and CDCl3 solutions on a Bruker Avance spectrometer,
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operating at 400 MHz for 1H NMR and 100 MHz for 13C NMR. In every case trimethylsilane (TMS) was used as an internal standard.

Chemical shifts are reported in parts per million (ppm, d units) relative to TMS solvent signal, and coupling constant (J) values are

reported in Hertz (Hz). Liquid chromatographmass spectra (LCMS) were obtained using SHIMADZU2010 EV usingmethanol solvent.

Analytical reversed-phase high performance liquid chromatography (HPLC) was performed on a Waters Separation Module 2695

system equipped with an auto sampler and a Waters 996 photodiode array detector. Purity of the final compounds was determined

using chromatographic systems; column, Princeton SPHER- 100, C18 (particle size = 5 mm, pore size = 10 nm, dimensions = 50mmx

4.6 mm); mobile phase A, water; mobile phase B, acetonitrile with 0.1% formic acid and 0.1% ammonium formate. Using a flow rate

of 1.0 mL/min, gradient elution was performed from 20% B to 80% B over 10 min. In every case, 10 mL of a 1 mM solution was

injected.

Synthesis of TAM8 and TAM11

Scheme 1: Reagents and conditions: (a) BnBr, K2CO3, CH3CN, reflux, 8 h; (b) MgBr2, benzene/ether, reflux, 6 h; (c) TBSCl,

imidazole, DMF, 0�C-rt, 2 hr (for 3a) and MeI, K2CO3, reflux, 8 hr (for 3b); (d) phenylmagnesium bromide or cyclohexylmagnesium

bromide, THF, 2 h; (e) H2/Pd-C, rt, 10 h; (f) FeCl3, (t-BuO)2, DCE, 100
�C, 2 h; (g) TBAF, THF, 0�C, 1 hr (for 9a) and BBr3, CH2Cl2, -

78�C-rt, 3 hr (for 9b).

Following the literature procedures (Barrero et al., 2006; Hayashi et al., 2008; Panda et al., 2007), the requisite phenyl and cyclo-

hexyl substituted methanols 5a–b were synthesized by the reaction between corresponding Grignard reagents and carbaldehydes

4a–b, which in turn were easily generated from the phenol derivative 5-(benzyloxy)-2-hydroxybenzaldehyde 3. Intermediate 3 was

readily synthesized from commercially available 1 in two steps. Removal of the hydroxyl group and debenzylation of 5a–b were

accomplished with hydrogen gas under Pd-catalysis to afford the desired intermediates 6a-b (Scheme 1).

2,5-bis(benzyloxy)benzaldehyde (2): To a solution of 2,5-dihydroxybenzaldehyde 1 (2.00 g, 14.48 mmol) in acetonitrile (40 mL),

benzyl bromide (4.30 mL, 36.20 mmol) and K2CO3 (5.00 g, 36.20 mmol) were added. The mixture was stirred at reflux for 8 hr. After

completion of the reaction, mixture was cooled to room temperature, water was added (50 mL), and extracted with EtOAc. The

extract was washed with saturated solution of NH4Cl and brine, then dried over Na2SO4 and concentrated in vacuo. The crude res-

idue was purified by a silica gel column chromatography with hexane and EtOAc (9:1) to give 2 (3.90 g, yield 85%) as a pale yellow

solid. 1H NMR (400 MHz, CDCl3) d 10.55 (s, 1H), 7.49 - 7.36 (m, 11 H), 7.23 - 7.20 (m, 1 H), 7.03 (d, J = 9.08 Hz, 1 H), 5.17 (s, 2 H), 5.08

(s, 2 H); 13C NMR (100 MHz, CDCl3) d 189.37, 155.99, 153.09, 136.68, 136.30, 128.73 (2C), 128.61 (2C), 128.27, 128.08, 127.57 (2C),

127.37 (2C), 125.66, 124.14, 115.15, 111.85, 71.32, 70.67; MS (LCMS): m/z 317.30 (M-H)+.

5-(benzyloxy)-2-hydroxybenzaldehyde (3): To a suspension of 2,5-bis(benzyloxy)benzaldehyde 2 (3.50 g, 10.99 mmol) in a mixture

of benzene and diethyl ether (7:1, 50 mL) was added magnesium bromide (2.43 g, 13.19 mmol) and stirred under refluxed for 6 hr.

After cooling to room temperature, 1 N HCl was added to the resulting mixture, and extracted with EtOAc. The organic layer was

washed with solution of saturated Na2CO3 and brine, and dried (Na2SO4). The solvent was evaporated in vacuo and the residue

was purified by a silica gel column chromatography with hexane/EtOAc (9:1) to give the desired product 3 (2.06 g, yield 82%) as

a yellow powder. 1H NMR (400 MHz, CDCl3) d 10.69 (s, 1H), 10.69 (s, 1 H), 7.47 - 7.34 (m, 5 H), 7.26 - 7.22 (m, 1 H), 7.10 (d, J =

3.08 Hz, 1 H), 6.96 (d, J = 9.04 Hz, 1 H), 5.08 (s, 2 H), 5.08 (s, 2 H); 13C NMR (100 MHz, CDCl3) d 196.06, 156.28, 151.84, 136.59,

128.68 (2C), 128.18, 127.47 (2C), 126.09, 120.13, 118.75, 116.96, 71.03; MS (LCMS): m/z 227.30 (M-H)+.

5-(benzyloxy)-2-((tert-butyldimethylsilyl)oxy)benzaldehyde (4a): To a solution of 3 (2.0 g, 8.76 mmol) in 20 mL of dichloromethane

under nitrogen was added imidazole (1.0 g, 14.69 mmol) and TBSCl (1.98 g, 13.14 mmol). The resulting mixture was stirred at room

temperature for 2 hr, and then extracted with EtOAc and washed with water, 1 N HCl, saturated NaHCO3 and brine. The crude prod-

uct was purified by silica gel chromatography (hexane/EtOAc, 5:1) to afford 2.34 g (78%yield) of 4a as a yellow oil. 1HNMR (400MHz,

CDCl3) d 10.45 (s, 1 H), 7.52 - 7.32 (m, 6 H), 7.16 (dd, J = 8.90, 3.30 Hz, 1 H), 6.86 (d, J = 8.80 Hz, 1 H), 5.07 (s, 2 H), 1.05 (s, 9 H), 0.28

(s, 6 H); 13C NMR (100 MHz, CDCl3) d 189.78, 153.47, 153.24, 136.69, 128.59 (2C), 128.05, 127.57 (2C), 127.20, 124.54, 121.60,

110.99, 70.61, 25.70 (3C), 18.34, 4.34; MS (LCMS): m/z 342.87 (M)+.
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5-(benzyloxy)-2-methoxybenzaldehyde (4b): To a solution of 3 (1.0 g, 4.38 mmol) in 12 mL of acetone was added MeI (0.33 mL,

5.26 mmol) and K2CO3 (0.91 g, 6.57 mmol). Then the mixture was stirred under reflux for 8 hr. After cooling to room temperature,

water was added and extracted with EtOAc, and washed with 1 N HCl, brine, dried (Na2SO4) and concentrated. The crude product

was purified by silica gel chromatography (hexane/EtOAc, 6:1) to afford 0.86 g (81% yield) of 4a as a yellow oil. 1H NMR (400 MHz,

CDCl3) d 10.47 (s, 1 H), 7.46 - 7.34 (m, 6 H), 7.24 - 7.21 (m, 1 H), 6.96 (d, J = 9.08Hz, 1 H), 5.08 (s, 2 H), 3.91 (s, 3 H); 13CNMR (100MHz,

CDCl3) d 189.42, 156.85, 152.78, 136.70, 128.58 (2C), 128.05, 127.54 (2C), 125.06, 124.18, 113.37, 112.00, 70.51, 56.15; MS (LCMS):

m/z 242.88 (M)+.

(5-(benzyloxy)-2-((tert-butyldimethylsilyl)oxy)phenyl)(phenyl)methanol (5a): To a solution of 5-(benzyloxy)-2-((tert-butyldimethyl-

silyl)oxy)benzaldehyde 4a (2.0 g, 5.84 mmol) in dry THF (30 mL) under nitrogen was added phenyl magnesium bromide 7.00 mL

(1 M) at room temperature and stirred for 2 hr. The reaction mixture was quenched by addition of saturated NH4Cl (2 mL) and

THF was removed in vacuo. The residue was extracted thrice with ethyl acetate, washed with brine and dried over Na2SO4. Organic

extract was concentrated and purified by silica gel column chromatography with 10% ethyl acetate in hexane to furnish carbinol

product 5a (1.76 g, 72%) as a colorless viscous liquid. 1H NMR (400 MHz, CDCl3) d 7.45 �7.29 (m, 10 H), 6.89 (d, J = 2.50 Hz,

1 H), 6.83 - 6.75 (m, 2 H), 6.08 (s, 1 H), 4.98 (s, 2 H), 0.96 (s, 9 H), 0.22 (d, J = 2.90 Hz, 6 H); 13C NMR (100 MHz, CDCl3) d 153.09,

147.07, 142.89, 137.17, 134.66, 128.50 (2C), 128.23 (2C), 127.85, 127.55, 127.31, 126.30, 118.93, 115.01, 114.53, 71.74, 70.59,

25.77 (3C), 18.19, 1.01, �4.13; MS (LCMS): m/z 319.50 (M-H)+.

(5-(benzyloxy)-2-methoxyphenyl)(cyclohexyl)methanol (5b): The title compound was obtained from 4b and cyclohexylmagnesium

bromide following the procedure for compound 5a in 66% yield after flash-chromatography (1:10 EtOAc/hexane) as a colorless

viscous liquid. 1H NMR (400 MHz, CDCl3) d 7.52 - 7.30 (m, 5 H), 6.95 (d, J = 2.79 Hz, 1 H), 6.90 - 6.77 (m, 2 H), 5.06 (s, 2 H), 4.55

(t, J = 6.90 Hz, 1 H), 3.82 (s, 3 H), 2.57 (d, J = 6.31 Hz, 1 H), 2.13-1.97 (m, 1 H), 1.87 - 1.58 - (m, 4 H), 1.48 - 1.08 (m, 5 H); MS

(LCMS): m/z 309.05 (M-OH), 227.10 (M-C7H7)
+.

(2-benzyl-4-(benzyloxy)phenoxy)(tert-butyl)dimethylsilane (6a): The compound 5a (1.60 g, 3.80 mmol) was hydrogenated over

10% Pd/C (0.20 g) and after usual work-up and purification furnished 6a (0.87 g, 73%) as white semi-solid. 1H NMR (400 MHz,

CDCl3) d 7.35 - 7.27 (m, 2 H), 7.26 - 7.18 (m, 3 H), 6.73 (d, J = 8.70 Hz, 1 H), 6.59 (dd, J = 8.70, 3.10 Hz, 1 H), 6.48 (d, J = 3.10 Hz,

1 H), 4.51 (bs, 1 H), 3.96 (s, 2 H), 1.01 (s, 9 H), 0.24 (s, 6 H); 13C NMR (100 MHz, CDCl3) d 149.45, 147.34, 140.61, 132.71, 129.06

(2C), 128.35 (2C), 125.94, 119.12, 117.44, 113.48, 36.01, 25.83 (3C), 18.25, �4.04 (2C); MS (LCMS): m/z 315.25 (M)+.

3-(cyclohexylmethyl)-4-methoxyphenol (6b): The title compound was obtained from 5b following the procedure for compound 6a

in 67% yield after flash-chromatography (1:10 EtOAc/hexane) as a colorless viscous liquid. 1H NMR (400 MHz, CDCl3) d 6.78 - 6.71

(m, 1 H), 6.69 - 6.61 (m, 2 H), 5.12 (bs, 1 H), 3.79 (s, 3 H), 2.47 (d, J = 7.00 Hz, 2 H), 1.78 - 1.49 (m, 6 H), 1.32 - 1.11 (m, 6 H), 1.06 - 0.89

(m, 2 H); 13C NMR (100 MHz, CDCl3) d 152.08, 148.89, 131.46, 118.10, 112.76, 111.90, 56.21, 38.27, 37.90, 33.29 (2C), 26.64, 26.37

(2C); MS (LCMS): m/z 220.73 (M)+.

Ethyl 4-benzyl-5-((tert-butyldimethylsilyl)oxy)-2-phenylbenzofuran-3-carboxylate (8a) (Guo et al., 2009): To a mixture of ethyl

benzoylacetate 7 (0.14 mL, 0.83 mmol), phenol derivative 6a (0.80 g, 2.54 mmol), and FeCl3$6H2O (0.035 g, 0.13 mmol) 1,2-dichlo-

roethane (3.0 mL) was added under nitrogen at room temperature. Then di-tert-butyl peroxide (0.34 mL, 1.86 mmol) was added

dropwise to the reaction mixture and was stirred for 2 hr at 100�C. After completion of the reaction, mixture was cooled to room tem-

perature and was quenched with saturated NaHCO3 and extracted with 25 mL of ethyl acetate. The organic phase was washed with

10 mL of saturated NaHCO3 and 10 mL of water. The extract was dried over Na2SO4 and concentrated. The crude mixture was

filtered through a small silica gel column and used as such in the next step.

Ethyl 4-benzyl-5-hydroxy-2-phenylbenzofuran-3-carboxylate (9a) (TAM8): To a solution of crude mixture of 8a (0.80 g) in dry

THF (25 mL) at 0�C was added tetra-n-butylammonium fluoride (TBAF) 2.0 mL (1M in THF). After being stirred at 0�C for 1 hr, the

reaction mixture was diluted with ethyl acetate, washed with water and brine. The combined organic extract was dried over

Na2SO4, filtered, and concentrated under reduced pressure. Purification of the crude reaction mixture by silica gel column chroma-

tography with ethyl acetate and hexane (1:10) as an eluent provided the desired product 9a as a colorless viscous liquid (10% overall

yield in two steps) with its regioisomer as major product. 1H NMR (400 MHz, CDCl3) d 8.05 - 7.93 (m, 2 H), 7.56 - 7.44 (m, 4 H), 7.40 -

7.19 (m, 6 H), 4.98 (bs, 1 H), 4.42 (q, J = 7.00 Hz, 2 H), 4.14 (s, 2 H), 1.41 (t, J = 7.00 Hz, 3 H); 13C NMR (100 MHz, CDCl3) d 164.07,

161.07, 150.89, 149.06, 139.79, 130.08, 129.81, 129.42 (3C), 128.80 (3C), 128.66 (2C), 127.98 (2C), 126.41 (2C), 112.53, 107.76,

60.61, 36.76, 14.26; MS (LCMS): m/z 373.10 (M)+.

Ethyl 6-benzyl-5-hydroxy-2-phenylbenzofuran-3-carboxylate (9’a): 1H NMR (400 MHz, CDCl3) d 7.85 - 7.82 (m, 2 H), 7.62 (s, 1 H),

7.54 - 7.49 (m, 3 H), 7.37 - 7.22 (m, 6 H), 4.90 (bs, 1 H), 4.51 (q, J = 7.16 Hz, 2 H), 4.43 (s, 1 H), 4.17 (s, 1 H), 1.29 (t, J = 7.16 Hz, 3 H); MS

(LCMS): m/z 373.09 (M)+.

Ethyl 4-(cyclohexylmethyl)-5-methoxy-2-phenylbenzofuran-3-carboxylate (8b). The title compound was obtained from 6b and 7

following procedure for compound 8a in 17% yield after flash-chromatography (1:10 EtOAc/hexane) as a colorless viscous liquid.
1H NMR (400 MHz, CDCl3) d 8.01 (dd, J = 7.30, 2.20 Hz, 2 H), 7.55 - 7.43 (m, 4 H), 7.32 - 7.22 (m, 1 H), 4.42 (q, J = 7.00 Hz, 2 H),

3.93 (s, 3 H), 2.63 (d, J = 6.9 Hz, 2 H), 1.78 �1.60 (m, 6 H), 1.42 (t, J = 6.99 Hz, 3 H), 1.35 - 1.14 (m, 3 H), 1.09 - 0.95 (m, 2 H); 13C

e13 Cell 170, 249–259.e1–e20, July 13, 2017



NMR (100 MHz, CDCl3) d 164.18, 160.17, 155.23, 148.55, 130.06, 129.87 (2C), 129.38 (2C), 128.96, 127.95 (2C), 120.77, 112.59,

102.72, 60.43, 55.81, 38.55, 38.37, 33.29 (2C), 26.64, 26.37 (2C), 14.21; MS (LCMS): m/z 393.08 (M)+.

Ethyl 6-(cyclohexylmethyl)-5-methoxy-2-phenylbenzofuran-3-carboxylate (8’b): 1H NMR (400 MHz, CDCl3) d 7.88 - 7.86

(m, 2 H), 7.69 (s, 1 H), 7.56 - 7.49 (m, 2 H), 7.37 �7.33 (m, 2 H), 4.51 (q, J = 7.12 Hz, 2 H), 2.96 (d, J = 6.96 Hz, 1 H), 2.67 (d, J =

6.88 Hz, 1 H), 1.80 - 1.65 (m, 6 H), 1.35 – 0.93 (m, 8 H); MS (LCMS): m/z 393.08 (M)+.

Ethyl 4-(cyclohexylmethyl)-5-hydroxy-2-phenylbenzofuran-3-carboxylate (9b) (TAM11): To a solution of compound 8b

(0.05 g, 0.13 mmol) in dichloromethane (10 mL) stirred under N2 gas, was added boron tribromide (0.04 mL, 0.39 mmol) at �78�C
and warm to room temperature and stirred for 3 hr. After completion of the reaction, reaction was quenched by addition of water

and extracted with ethyl acetate, and solvent was evaporated under reduced pressure. Crude reaction mixture was purified by silica

gel column chromatography with ethyl acetate/hexane (1:10) as an eluent to provide the desired product 9b 0.029 g, 61% yield as a

colorless viscous liquid. 1H NMR (400 MHz, CDCl3) d 8.07 - 7.94 (m, 2 H), 7.57 - 7.42 (m, 4 H), 7.29�7.25 (m, 1 H), 5.32 (bs, 1 H), 4.41

(q, J = 7.20 Hz, 2 H), 2.64 (d, J = 7.00 Hz, 2 H), 1.82 - 1.59 (m, 6 H), 1.41 (t, J = 7.20 Hz, 3 H), 1.29 - 1.16 (m, 3 H), 1.11 - 0.97 (m, 2 H); 13C

NMR (100 MHz, CDCl3) d 164.18, 160.78, 151.01, 148.92, 130.00, 129.93 (2C), 129.42, 127.96 (2C), 126.45, 125.81, 112.68, 108.67,

107.20, 60.57, 38.55, 33.29 (2C), 29.88, 26.54, 26.31 (2C), 14.26; MS (LCMS): m/z 379.09 (M)+.

Ethyl 6-(cyclohexylmethyl)-5-hydroxy-2-phenylbenzofuran-3-carboxylate (9’b): 1H NMR (400 MHz, CDCl3) d 7.89 - 7.87 (m, 2 H),

7.58 - 7.48 (m, 3 H), 7.36 (s, 1 H), 7.31 (s, 1 H), 5.14 (bs, 1 H), 4.53 (q, J = 7.16 Hz, 2 H), 2.95 (d, J = 6.96 Hz, 1 H), 2.67 (d, J = 7.00 Hz,

1 H), 1.78 - 1.67 (m, 6 H), 1.36 (t, J = 7.16 Hz, 3 H), 1.36 - 1.11 (m, 3 H), 0.92 - 0.86 (m, 2 H); MS (LCMS): m/z 379.08 (M)+.

Synthesis of TAM7 and TAM9-16 (Scheme 2)

Scheme 2: Reagents and conditions: (a) Cu(OTf)2, toluene, reflux, 12 h; (b) formaldehyde, piperidine, reflux, 8 h; (c) BBr3,

CH2Cl2, �78 to 0�C, 3 h; (d) NaOH, EtOH, H2O, reflux, 4 h; (e) i) (COCl)2, CH2Cl2, DMF (cat.), 0�C - rt, 3 hr, ii) methylamine, THF;

(f) PPh3, DEAD, MeOH, overnight; (g) Tf2O, pyridine, rt, 1 h; (h) Pd(OAc)2, PPh3, formic acid, Et3N, 90
�C, 8 hr.

Ethyl 5-hydroxy-2-phenylbenzofuran-3-carboxylate (12a) (Mothe et al., 2010) (TAM7): To a suspension of ethyl 3-oxo-3-phe-

nylpropanoate 10a (2.40 mL, 13.88 mmol) and Cu(OTf)2 (5 mol %, 0.17 g, 0.46 mmol) in dry toluene (10 mL) under a nitrogen atmo-

spherewas added dropwise a solution of p-benzoquinone 11 (1.0 g, 9.25mmol) dissolved in toluene (8mL). The reactionmixturewas

stirred at reflux for 12 hr. After completion of reaction, the reactionmixture was quenched with 10mL of saturated NH4Cl solution and

extracted with ethyl acetate (3x10 mL). The combined organic layer was washed with brine, dried over anhydrous Na2SO4 and

concentrated under reduced pressure. Crude reaction mixture was purified by flash silica gel column chromatography (1:10 ethyl

acetate/hexane) to afford the compound 13a, 1.07 g, 41% yield as a pale brown amorphous solid. 1H NMR (400 MHz, DMSO-d6)

d 9.45 (s, 1 H), 7.94 (dd, J = 6.68, 3.01 Hz, 2 H), 7.61 - 7.46 (m, 4 H), 7.39 (d, J = 2.49 Hz, 1 H), 6.87 (dd, J = 8.80, 2.49 Hz, 1 H),

4.32 (q, J = 7.12 Hz, 2 H), 1.32 (t, J = 7.12 Hz, 3 H),; 13C NMR (100 MHz, DMSO-d6) d 163.55, 160.71, 154.91, 147.94, 130.76,

129.67, 129.64 (2C), 128.60 (2C), 127.83, 114.87, 112.16, 108.83, 107.03, 60.79, 14.44; MS (LCMS): m/z 282.93 (M)+.

Ethyl 5-hydroxy-2-(4-methoxyphenyl)benzofuran-3-carboxylate (12b): The title compound was obtained from 10b and p-benzo-

quinone 11 following procedure for compound 12a in 43% yield after flash-chromatography (1:10 EtOAc/hexane) as a pale gray

amorphous solid. 1H NMR (400 MHz, DMSO-d6) d 9.39 (s, 1 H), 7.94 (d, J = 8.84 Hz, 2 H), 7.45 (d, J = 8.80 Hz, 1 H), 7.35 (d, J =

2.32 Hz, 1 H), 7.07 (d, J = 8.84 Hz, 2 H), 6.85 - 6.80 (m, 1 H), 4.32 (q, J = 7.08 Hz, 2 H), 3.85 (s, 3 H), 1.33 (t, J = 7.08 Hz, 3 H); 13C

NMR (100 MHz, DMSO-d6) d 163.75, 161.33, 160.98, 154.81, 147.61, 131.30 (2C), 128.04, 121.94, 114.37, 114.11 (2C), 111.93,

107.58, 107.05, 60.67, 55.82 14.51; MS (LCMS): m/z 313.00 (M)+.

Ethyl 5-hydroxy-2-phenyl-4-(piperidin-1-ylmethyl)benzofuran-3-carboxylate (13a) (Matsumoto et al., 2005) (TAM9): To a so-

lution of 12a (1.0 g, 3.54 mmol) in EtOH (6 mL) was added formalin (37%, 1.2 eq.) and piperidine (0.35 mL, 3.54 mmol). The reaction
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mixture was stirred for approximately 8 hr at 80�C. The solution was then cooled to room temperature and diluted with water, and

extracted with dichloromethane. The organic layer was dried over Na2SO4 and concentrated in vacuo. Crude residue was purified

by silica gel column chromatography (40% ethyl acetate in n-hexane) and provided the desired product 13a (0.97 g, 72% yield).
1H NMR (400 MHz, DMSO-d6) d 7.77 (dd, J = 7.70, 1.69 Hz, 2 H), 7.53 - 7.41 (m, 3 H), 7.33 (d, J = 8.80 Hz, 1 H), 6.88 (d, J =

8.80 Hz, 1 H), 4.38 (q, 7.20 Hz, 2 H), 3.99 (s, 2 H), 2.63 - 2.45 (m, 4 H), 1.78 - 1.43 (m, 6 H), 1.30 (t, 7.20 Hz, 3 H); 13C NMR (100

MHz, DMSO-d6) d 166.35, 156.70, 155.50, 148.16, 130.03, 129.49, 128.33 (2C), 127.87 (2C), 125.49, 115.21, 112.24, 110.67,

110.09, 61.41, 57.98, 53.93 (2C), 25.85 (2C), 23.98, 13.98; MS (LCMS): m/z 380.15 (M)+.

5-hydroxy-2-phenyl-4-(piperidin-1-ylmethyl)benzofuran-3-carboxylic acid (15a) (TAM10): To a solution of ester derivative

13a (0.80 g, 2.10 mmol) in EtOH (10 mL) a solution of NaOH (0.34 g, 8.43 mmol) in water (5 mL) was added and then the mixture

was refluxed for 4 hr. After completion of the reaction, reaction mixture was allowed to cool to room temperature and poured into

ice cold water. Neutralization with dil. HCl solution resulted in precipitation of desired product as white solid. Solid so obtained

was filtered, washed with water and dried to obtain the desired product 15a (0.43 g, 58% yield) as an amorphous white solid. 1H

NMR (400 MHz, DMSO-d6) d 7.83-7.76 (m, 2 H), 7.37 - 7.16 (m, 4 H), 6.79 (d, J = 9.00 Hz, 1 H), 4.01 (s, 2 H), 2.87 - 2.71 (m, 4 H),

1.58 - 1.39 (m, 6 H); 13C NMR (100 MHz, DMSO-d6) d 168.31, 153.50, 152.37, 147.64, 130.92, 129.05, 128.70 (2C), 127.97,

127.53 (2C), 119.28, 113.86, 113.27, 108.18, 51.34 (2C), 50.94, 23.81 (2C), 22.21; MS (LCMS): m/z 352.10 (M)+.

5-hydroxy-N-methyl-2-phenyl-4-(piperidin-1-ylmethyl)benzofuran-3-carboxamide (16a) (TAM12): To a solution of acid 15a

(0.25 g, 0.71 mmol) in dichloromethane (8 mL), oxalyl chloride (0.08 mL, 0.93 mmol) and N,N-dimethylformamide (2 drops) were

added at 0�C and stirred at room temperature for 3 hr. The reaction mixture was evaporated under reduced pressure. The residue

was redissolved in THF (10 mL) and a solution of methylamine 0.54 mL (2 M in THF) was added and the mixture was stirred for 2 hr.

After completion of the reaction, solvent was evaporated. Water was added and extracted with dichloromethane, dried (Na2SO4) and

concentrated. Crude reaction mixture was purified by silica gel column chromatography (1% methanol in dichloromethane) to pro-

vide the desired product 16a (0.15 g, 57% yield) as a pale brown amorphous solid. 1H NMR (400 MHz, DMSO-d6) d 8.82 (s, 1 H), 7.76

(dd, J = 7.85, 1.54 Hz, 2 H), 7.54 - 7.30 (m, 4 H), 6.89 (d, J = 8.80 Hz, 1 H), 3.96 (s, 2 H), 2.84 - 2.80 (m, 7 H), 1.78 - 1.59 (m, 4 H), 1.40 -

1.17 (m, 2 H); 13C NMR (100 MHz, DMSO-d6) d 166.60, 159.43, 154.67, 154.07, 147.40, 128.74 (2C), 128.35, 120.20, 116.33, 113.73

(2C), 111.73, 111.67, 55.36 (2C), 53.05, 52.48, 26.83 (2C), 23.14, 21.76; MS (LCMS): m/z 364.89 (M)+.

Ethyl 5-hydroxy-2-(4-methoxyphenyl)-4-(piperidin-1-ylmethyl)benzofuran-3-carboxylate (13b): The title compound was obtained

from 12b following procedure for compound 13a in 67% yield after flash-chromatography (1:10 EtOAc/hexane) as an amorphous

gray solid. 1H NMR (400 MHz, DMSO-d6) d 7.68 (d, J = 8.80 Hz, 2 H), 7.39 (d, J = 8.80 Hz, 1 H), 7.09 (d, J = 8.80 Hz, 2 H), 6.82

(d, J = 8.80 Hz, 1 H), 4.32 (q, J = 7.00 Hz, 2 H), 3.84 (s, 3 H), 3.77 (s, 2 H), 1.55-1.34 (m, 4 H), 1.26 (t, J = 7.00 Hz, 3 H); 13C NMR

(100 MHz, DMSO-d6) d 165.74, 160.89, 155.68, 154.20, 147.62, 129.33 (2C), 126.01, 121.91, 114.72 (2C), 114.65, 114.14, 110.75,

109.94, 61.60, 55.83 (2C), 55.45, 53.74, 25.87 (2C), 24.26, 14.30; MS (LCMS): m/z 409.87 (M)+.

Ethyl 5-hydroxy-2-(4-hydroxyphenyl)-4-(piperidin-1-ylmethyl)benzofuran-3-carboxylate (14b) (TAM13): The title compound

was obtained from 13b following procedure for compound 9a in 62%yield after flash-chromatography (4:10 EtOAc/hexane) as a gray

amorphous solid. 1H NMR (400MHz, DMSO-d6) d 7.57 (d, J = 8.80 Hz, 2 H), 7.36 (d, J = 8.80 Hz, 1 H), 7.33 (d, J = 8.80 Hz, 1 H), 6.94 -

6.85 (m, 2 H), 6.80 (d, J = 8.80 Hz, 1 H), 4.31 (q, 7.20 Hz, 2 H), 3.78 (s, 2 H), 2.46 - 2.28 (m, 4 H) 1.54 - 1.36 (m, 6 H), 1.23 - 1.26

(t, 7.20 Hz, 3 H); 13C NMR (100 MHz, DMSO-d6) d, 165.86, 159.48, 156.31, 154.23, 147.50, 129.46 (2C), 126.13, 120.38, 116.13

(2C), 114.39, 113.83, 110.71, 109.31, 61.52, 55.47, 53.70 (2C), 25.80 (2C), 24.17, 14.26; MS (LCMS): m/z 396.15 (M)+.

5-hydroxy-2-(4-methoxyphenyl)-4-(piperidin-1-ylmethyl)benzofuran-3-carboxylic acid (15b): The title compound was obtained

from 13b as described for 15a, and used as such in the next step.

5-hydroxy-2-(4-methoxyphenyl)-N-methyl-4-(piperidin-1-ylmethyl)benzofuran-3-carboxamide (16b): The title compound was ob-

tained from 15b as described for 16a in 60% yield after flash-chromatography (1% methanol in dichloromethane) as a pale brown

amorphous solid. 1H NMR (400 MHz, DMSO-d6) d 7.68 (d, J = 9.00 Hz, 2 H), 7.30 - 7.21 (m, 1 H), 6.97 (d, J = 8.8 Hz, 2 H), 6.88

(d, J = 8.8 Hz, 1 H), 6.37 (bs, 1 H), 3.95 (s, 2 H), 3.88 (s, 3 H), 2.98 (d, J = 4.80 Hz, 2 H), 2.81 - 2.53 (m, 4 H), 1.77 - 1.43 (m, 6 H);
13C NMR (100 MHz, DMSO-d6) d 167.38, 160.53, 154.84, 153.75, 147.88, 128.41 (2C), 126.25, 122.05, 114.74, 114.28 (2C),

111.67, 111.07, 55.82, 55.34, 53.48 (2C), 26.96, 25.29 (2C), 23.48; MS (LCMS): m/z 395.03 (M)+.

5-hydroxy-2-(4-hydroxyphenyl)-N-methyl-4-(piperidin-1-ylmethyl)benzofuran-3-carboxamide (17b) (TAM16): The title

compound was obtained from 16b as described for 9b in 67% yield after flash-chromatography (2% methanol in dichloromethane)

to provide the desired product 17b as a pale brown amorphous solid. 1H NMR (400 MHz, DMSO-d6) d 10.04 (s, 1 H), 8.80 (d, J =

4.69 Hz, 1 H), 7.72 - 7.44 (m, 3 H), 7.02 - 6.94 (m, 1 H), 6.93 (d, J = 8.66 Hz, 2 H), 4.30 (s, 2 H), 3.51 - 3.33 (m, 4 H), 2.81 (d, J =

4.70 Hz, 3 H), 1.79 - 1.73 (m, 4 H), 1.59 - 1.50 (m, 2 H); 13C NMR (100 MHz, DMSO-d6) d 166.60, 159.43, 154.67, 154.07, 147.40,

128.74 (2C), 128.35, 120.20, 116.33, 113.73 (2C), 111.73, 111.67, 55.36 (2C), 53.05, 52.48, 26.83 (2C), 23.14, 21.76; MS (LCMS):

m/z 380.99 (M)+.

Ethyl 5-methoxy-2-phenyl-4-(piperidin-1-ylmethyl)benzofuran-3-carboxylate (18a) (TAM14): The title compound was ob-

tained from 13a and methanol following the literature procedure(Newlander et al., 1997). To a solution of 13a (0.10 g, 0.26 mmol)

in dry THF (5 mL), methanol (0.013 mL, 0.316 mmol), Ph3P (0.106 g, 0.39 mmol), and DEAD (0.07 mL, 0.39 mmol) were added.
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The reaction mixture was stirred under a nitrogen atmosphere for overnight. After completion of the reaction, mixture was

concentrated and extracted with CH2Cl2 (2 3 15 mL). Organic extract was dried (Na2SO4), concentrated and purified by flash silica

gel column chromatography (30% ethyl acetate–hexane) to afford the compound 18a (0.05 g, 48% yield) as a pale yellow liquid. 1H

NMR (400MHz, CDCl3) d 7.90 - 7.76 (m, 2 H), 7.53 - 7.34 (m, 4 H), 6.99 (d, J = 8.95 Hz, 1 H), 4.36 (q, J = 7.20 Hz, 2 H), 3.90 (s, 3 H), 3.83

(s, 2 H), 2.29 (m, 4 H), 1.54 - 1.35 (m, 6 H), 1.29 (t, J = 7.20 Hz, 3 H). MS (LCMS): m/z 395.15 (M)+.

Ethyl 2-phenyl-4-(piperidin-1-ylmethyl)-5-(((trifluoromethyl)sulfonyl)oxy)benzofuran-3-carboxylate (19a): Compound 13a (0.10 g,

0.26 mmol) was dissolved in dry dichloromethane (3 mL) under nitrogen at room temperature followed by the addition of dry 2,6-

lutidine (0.05 mL, 0.42 mmol). Trifluoromethanesulfonic anhydride (0.05 mL, 0.32 mmol) in dry dichloromethane (1 mL) was then

added dropwise. The reaction mixture was stirred at room temperature for 1 hr. Water was added to the reaction mixture and

extracted with CH2Cl2 (3 X 5 mL). The combined organic phase was washed with diluted HCl, water, brine and dried over

Na2SO4, and concentrated. The crude reaction mixture was passed through a small of silica gel column and used as such in

next step.

Ethyl 2-phenyl-4-(piperidin-1-ylmethyl)benzofuran-3-carboxylate (20a) (TAM15): The title compound was obtained from

19a following the literature procedure (Peterson et al., 1987) in 23% yield after flash-chromatography (1:6 EtOAc/hexane). In brief,

to a solution of triflate 19a (0.10 g, 0.19 mmol) in 3 mL of DMF, triphenylphosphine (2.0 mg, 0.008 mmol), palladium acetate

(1.0 mg, 0.0044 mmol), triethylamine (0.08 mL, 0.58 mmol), and formic acid (0.015 mL, 0.39 mmol) were added. Then the mixture

was stirred at 90 O C for 8 hr. Reaction mixture was diluted with water, extracted with ethyl acetate, dried over Na2SO4, and

concentrated. The crude residue was chromatographed on silica gel with ethyl acetate-hexanes (1:10) to give 0.016 g (23%) of

20a as a colorless viscous liquid. 1H NMR (400 MHz, DMSO-d6) d 7.77 (d, J = 6.46 Hz, 2 H), 7.48 - 7.67 (m, 4 H), 7.34 (t, J =

7.78 Hz, 1 H), 7.21 (d, J = 7.34 Hz, 1 H), 4.32 (q, J = 7.12 Hz, 2 H), 3.65 (s, 2 H), 2.17 - 2.24 (m, 4 H), 1.28 - 1.39 (m, 6 H),

1.24 (t, J = 7.12 Hz, 3 H); 13C NMR (100 MHz, DMSO-d6) d 165.02, 154.91, 154.14, 133.45, 130.39, 129.33, 129.22 (2C),

127.93 (2C), 125.60, 125.47, 125.12, 111.83, 110.95, 61.51, 61.48, 54.09 (2C), 25.86 (2C), 24.59, 14.18; MS (LCMS): m/z

363.93 (M)+.

Synthesis of TAM19 and TAM20 (Scheme 3)

Scheme 3: Reagents and conditions: (a) FeCl3, (t-BuO)2, 100
�C, 4 h; (b) NBS, AIBN, CCl4, 50

�C, 5 h; (c) piperidine, NaI, K2CO3,

acetone, 60�C, 6 h; (d) BBr3, CH2Cl2, �78 to 0�C, 3 hr, (e) NaOH, EtOH, H2O, 90�C, 6 h; (f) i) (COCl)2, CH2Cl2, DMF (cat.), 0�C - rt,

3 hr, ii) NH2Me in THF.

Ethyl 6-methoxy-4-methyl-2-phenylbenzofuran-3-carboxylate (23a): The title compound was obtained from 3-methoxy-5-meth-

ylphenol 21 and ethyl benzoylacetate 22a following procedure for compound 8a in 35% yield after flash-chromatography (1:6

EtOAc/hexane) as colorless viscous liquid. 1H NMR (400 MHz, CDCl3) d 7.87 – 7.75 (m, 2 H), 7.52 - 7.38 (m, 3 H), 6.92 (d, J =

1.90 Hz, 1 H), 6.75 (d, J = 1.30 Hz, 1 H), 4.42 (q, J = 7.10 Hz, 2 H), 3.87 (s, 3 H), 2.56 (s, 3 H), 1.36 (t, J = 7.10 Hz, 3 H); 13C NMR

(100 MHz, CDCl3) d 165.98, 158.42, 155.05, 154.74, 132.43, 130.04, 129.15, 128.38 (2C), 127.48 (2C), 119.35, 114.36, 110.61,

93.14, 61.37, 55.61, 19.90, 13.98; MS (LCMS): m/z 310.94 (M)+.

Ethyl 4-(bromomethyl)-6-methoxy-2-phenylbenzofuran-3-carboxylate (24a): To a solution of ethyl 6-methoxy-4-methyl-2-phenyl-

benzofuran-3-carboxylate 23a (1.0 g, 3.22mmol) in tetrachloromethane (20mL),N-bromosuccinimide (0.69 g, 3.87mmol), and a cat-

alytic amount of azo(bis)isobutyronitrile (AIBN) (0.053 g, 0.32 mmol) were added and refluxed for 5 hr. The solvent was removed in

vacuo, and crude residue was chromatographed on silica gel with ethyl acetate-hexanes (2:10) to give of 24a as a yellow viscous

liquid. But this compound was unstable and was used as such in the next step.

Ethyl 6-methoxy-2-phenyl-4-(piperidin-1-ylmethyl)benzofuran-3-carboxylate (25a): To a solution of ethyl 4-(bromomethyl)-6-me-

thoxy-2-phenylbenzofuran-3-carboxylate 15 (0.60 g, 1.54 mmol) in acetone (10 mL), NaI (0.23 g, 1.54 mmol), piperidine (0.18 g,
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1.84mmol) and K2CO3 (0.32 g, 2.31 mmol) were added. Then the resulting mixture was refluxed for about 6 hr and then, after cooling,

was filtered and the solvent was evaporated. Crude reaction mixture was purified by silica gel column chromatography and provided

the desired product 16 (0.39 g, 65% yield). 1H NMR (400 MHz, CDCl3) d 7.86 - 7.58 (m, 3 H), 7.54 - 7.38 (m, 3 H), 7.10 (d, J = 1.61 Hz,

1 H), 4.66 (s, 2 H), 4.30 (q, J = 7.09 Hz, 2 H), 3.97 (s, 3 H), 3.83 - 2.37 (m, 4 H), 2.20 - 1.51 (m, 6 H), 1.18 (t, J = 7.12 Hz, 3 H); MS (LCMS):

m/z 394.03 (M)+.

Ethyl 6-hydroxy-2-phenyl-4-(piperidin-1-ylmethyl)benzofuran-3-carboxylate (26a) (TAM20): The title compound was

obtained from 25a and boron tribromide as described for 9b in 64% yield after flash-chromatography (1% methanol in

dichloromethane)) as an amorphous brown solid. 1H NMR (400 MHz, CD3OD) d 7.74 - 7.66 (m, 2 H), 7.57 - 7.46 (m, 3 H),

7.13 (d, J = 2.10 Hz, 1 H), 7.01 (d, J = 2.10 Hz, 1 H), 4.63 (s, 2 H), 4.31 (q, 7.10 Hz, 2 H), 3.52 - 2.25 (m, 4 H), 2.01 - 1.65

(m, 6 H), 1.15 (t, 7.10 Hz, 3 H); 13C NMR (100 MHz, CD3OD) d 166.06, 160.47, 156.19, 156.14, 130.13, 129.83, 129.05 (2C),

127.91, 127.81 (2C), 123.07, 118.65, 109.54, 99.28, 61.34, 59.04, 52.82 (2C), 22.73 (2C), 21.48, 12.54; MS (LCMS): m/z

380.00 (M)+.

Ethyl 6-methoxy-2-(4-methoxyphenyl)-4-methylbenzofuran-3-carboxylate (23b): The title compound was obtained from 3-me-

thoxy-5-methylphenol 21 and ethyl 3-(4-methoxyphenyl)-3-oxopropanoate 22b following procedure for compound 8a in 44%

yield after flash-chromatography (1:6 EtOAc/hexane) as a colorless viscous liquid. 1H NMR (400 MHz, CDCl3) d 7.77 (d, J =

8.80 Hz, 2 H), 6.99 (d, J = 8.95 Hz, 2 H), 6.90 (d, J = 1.91 Hz, 1 H), 6.73 (d, J = 1.32 Hz, 1 H), 4.41 (q, J = 7.19 Hz, 2 H),

3.88 (s, 3 H), 3.86 (s, 3 H), 2.55 (s, 3 H), 1.37 (t, J = 7.19 Hz, 3 H); 13C NMR (100 MHz, CDCl3) d 166.03, 160.45, 158.14,

155.32, 154.82, 132.22, 129.18 (2C), 122.65, 119.44, 114.20, 113.85 (2C), 109.33, 93.15, 61.24, 55.60, 55.32, 20.07, 14.06;

MS (LCMS): m/z 340.94 (M)+.

Ethyl 4-(bromomethyl)-6-methoxy-2-(4-methoxyphenyl)benzofuran-3-carboxylate (24b): The title compound was obtained from

23b and N-bromosuccinimide following procedure for compound 24a and was used as such in the next step.

Ethyl 6-methoxy-2-(4-methoxyphenyl)-4-(piperidin-1-ylmethyl)benzofuran-3-carboxylate (25b): The title compound was ob-

tained from 24b and piperidine following procedure for compound 25a in 63% yield after flash-chromatography (1:1 EtOAc/hex-

ane) as a colorless viscous liquid. 1H NMR (400 MHz, CDCl3) d 7.78 (d, J = 8.88 Hz, 2 H), 7.02 - 6.87 (m, 3 H), 6.83 (d, J =

2.08 Hz, 1 H), 4.37 (q, J = 7.16 Hz, 2 H), 3.88 (s, 3 H), 3.86 (s, 3 H), 3.68 (s, 2 H), 2.34 - 2.26 (m, 4 H), 1.51 - 1.41 (m, 6 H),

1.34 (t, J = 7.16 Hz, 3 H); 13C NMR (100 MHz, CDCl3) d 165.82, 160.35, 157.80, 155.08, 133.96, 129.25, 129.18, 122.70,

118.99, 113.90, 113.76 (2C), 113.63, 110.19, 94.07, 61.78, 61.04, 55.63, 55.31 (2C), 54.28, 25.94 (2C), 24.61, 14.97; MS

(LCMS): m/z 423.97 (M)+.

Ethyl 2-(6-hydroxy-2-(4-hydroxyphenyl)-4-(piperidin-1-ylmethyl)benzofuran-3-yl)-2-oxoacetate (26b): The title compound was

obtained from 25b with boron tribromide as described for 9b. Crude reaction mixture was passed through a bed of silica gel and

used as such in the next step. 1H NMR (400 MHz, DMSO-d6) d 8.90 (bs, 1 H), 7.62 - 7.47 (m, 2 H), 7.20 - 7.16 (m, 1 H),

7.04 �6.98 (m, 1 H), 6.92 (d, J = 8.66 Hz, 2 H), 4.65 (d, J = 4.11 Hz, 2 H), 4.26 (q, J = 7.14 Hz, 2 H), 3.46 - 3.36 (m, 2 H), 3.10 -

2.94 (m, 2 H), 1.96 - 1.59 (m, 5 H), 1.51 - 1.36 (m, 1 H), 1.15 (t, J = 7.14 Hz, 3 H); 13C NMR (100 MHz, DMSO-d6) d 165.56,

159.88, 159.74, 156.02, 155.36, 131.00 (2C), 123.46, 120.51, 118.91, 115.80, 115.64 (2C), 108.52, 99.75, 61.57, 55.36, 54.07,

52.66, 22.74 (2C), 21.79, 14.05; MS (LCMS): m/z 423.97 (M)+.

6-methoxy-2-(4-methoxyphenyl)-4-(piperidin-1-ylmethyl)benzofuran-3-carboxylic acid (27a): The title compound was obtained

from 26a with aqueous NaOH as described for 15a. Crude reaction mixture was passed through a bed of silica gel and used as

such in the next step.

2-(6-hydroxy-2-(4-hydroxyphenyl)-4-(piperidin-1-ylmethyl)benzofuran-3-yl)-2-oxoacetic acid (27b): The title compound was ob-

tained from 26b with aqueous NaOH as described for 15a. Crude reaction mixture was passed through a bed of silica gel and

used as such in the next step.

6-methoxy-2-(4-methoxyphenyl)-N-methyl-4-(piperidin-1-ylmethyl)benzofuran-3-carboxamide (28a): The title compoundwas ob-

tained from 27a following procedure for compound 16a in 68% yield after flash-chromatography (2%methanol in dichloromethane)

as a brown viscous liquid. 1H NMR (400 MHz, DMSO-d6) d 8.94 (s, 1 H), 7.71 - 7.50 (m, 2 H), 7.46�7.43 (m, 3 H), 7.18 - 7.14 (m, 2 H),

4.32 (s, 2 H), 2.88 - 2.83 (m, 4 H), 2.82 (d, J = 4.60 Hz, 3 H), 1.79 - 1.69 (m, 5 H), 1.41 - 1.36 (m, 1 H); 13C NMR (100 MHz, DMSO-d6)

d 166.20, 156.74, 155.07, 152.36, 129.65, 129.53 (2C), 129.43, 126.51 (2C), 123.10, 119.61, 112.71, 115.62, 99.53, 56.06, 52.55 (2C),

26.84 (2C), 22.86, 21.90; MS (LCMS): m/z 365.03(M)+.

6-hydroxy-2-(4-hydroxyphenyl)-N-methyl-4-(piperidin-1-ylmethyl)benzofuran-3-carboxamide (28b) (TAM19): The title

compound was obtained from 27b as described for 9a in 60% yield after flash-chromatography (2% methanol in dichlorome-

thane) to provide the desired product 29b as a pale yellow amorphous solid. 1H NMR (400 MHz, DMSO-d6) d 8.36 (d, J =

4.21 Hz, 1 H), 7.60 - 7.49 (m, 2 H), 6.91 - 6.81 (m, 3 H), 6.75 (d, J = 1.61 Hz, 1 H), 3.48 (s, 2 H), 2.77 (d, J = 4.55 Hz, 3 H),

2.30 - 2.21 (m, 4 H), 1.55 - 1.28 (m, 6 H); 13C NMR (100 MHz, DMSO-d6) d 166.53, 159.17, 156.21, 154.67, 152.44, 128.22

(2C), 122.49, 120.29, 119.91, 117.31, 116.32 (2C), 111.30, 99.51, 56.09, 52.42 (2C), 49.01, 26.80 (2C), 22.85, 21.94; MS

(LCMS): m/z 380.99 (M)+.
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Synthesis of TAM17 and TAM18 (Scheme 4)

Scheme 4: Reagents and conditions: (a) N2CHCO2Et, HBF4-OEt2, rt, 2 h; (b) LDA, I2, �78�C, 1 h; (c) arylboronic acid, Pd(PPh3)4,

Na2CO3, 100
�C, 10 h; (d) BBr3, �78�C-rt, 4h; (e) piperidine, formaldehyde, 80�C, 3 h; (f) NaOH, EtOH-H2O, reflux, 4 h; (g) i) (COCl)2,

cat. DMF, CH2Cl2, 2 hr, ii) NH2Me in THF.

Ethyl 5-methoxybenzofuran-3-carboxylate (30) (He et al., 2014): HBF4$Et2O (0.09 mL, 0.66 mmol) was added to a solution of com-

pound 29 (1.0 g, 6.57mmol) in CH2Cl2 (4mL), and then a solution of ethyl diazoacetate (0.90 g, 7.89mmol) in CH2Cl2 (4mL) was added

dropwise. Once gas evolution ceased, the reaction mixture was stirred for 2 hr, then concentrated to half, and conc. H2SO4 (0.7 mL

was added to the mixture. After 30 min, the acidic mixture was neutralized with Na2CO3 (aq.). After completion of the reaction, water

was added to crude mixture and extracted with CH2Cl2, and the solvent was evaporated. Crude reaction mixture was purified by

silica gel column chromatography (10% ethyl acetate–hexane) and provided the desired product 30 in 1.05 g, 73% yield as a pale

yellow viscous liquid. 1H NMR (400 MHz, DMSO-d6) d 8.23 (s, 1 H), 7.55 (d, J = 2.60 Hz, 1 H), 7.42 (d, J = 8.90 Hz, 1 H), 6.97 (dd,

J = 9.00, 2.60 Hz, 1 H), 4.43 (q, J = 7.10 Hz, 2 H), 3.90 (s, 3 H), 1.44 (t, J = 7.10 Hz, 3 H) ; MS (LCMS): m/z 220.83 (M)+.

Ethyl 2-iodo-5-methoxybenzofuran-3-carboxylate (31): To a mixture of compound 30 (1 g, 4.54 mmol) and iodine (1.44 g,

11.35 mmol) in 12 mL dry THF under N2 gas was dropwisely added LDA solution (15.90 mL, 1 M in THF) at �78�C and stirred at

this temperature for 1 hr. After completion of the reaction (by LCMS) the reaction was quenched with saturated NH4Cl solution

and concentrated. The residue was diluted with water and extracted by EtOAc. The organic extracts was washed with brine, and

dried over NaSO4. The solvent was removed and the residue was purified by silica gel column chromatography (10% EtOAc in hex-

ane) and afforded compound 31 (1.25 g, 80% yield) as a yellow solid. 1H NMR (400 MHz, DMSO-d6) d 7.50 (d, J = 2.64 Hz, 1 H), 7.39

(d, J = 9.04 Hz, 1 H), 6.90 (dd, J = 9.04, 2.65 Hz, 1 H), 4.47 (q, J = 7.16 Hz, 2 H), 3.88 (s, 3 H), 1.37 (t, J = 7.16 Hz, 3 H); 13C NMR

(100 MHz, DMSO-d6) d 162.68, 156.93, 153.61, 126.50, 119.21, 114.05, 111.49, 108.17, 103.80, 60.61, 55.85, 14.27; MS (LCMS):

m/z 346.31 (M)+.

Ethyl 2-(6-hydroxypyridin-3-yl)-5-methoxybenzofuran-3-carboxylate (32a): A mixture of compound 31 (0.20 g, 0.58 mmol), (6-hy-

droxypyridin-3-yl)boronic acid (0.096 g, 0.69 mmol) and Pd(PPh3)4 (0.033 g, 0.03 mmol) in 1 mL aq. Na2CO3 (0.12 g, 1.15 mmol) and

dioxane (7 mL) under nitrogen was stirred at 100�C in a two necked round bottom flask for 10 hr. After cooling to room temperature,

the reaction mixture was concentrated. The residue was dissolved in CH2Cl2 and washed with water and brine. The combined

organic extracts were dried over anhydrous Na2SO4. The solvent was removed and the residue was purified by silica gel column

chromatography (1:3 EtOAc/hexane) to give compound 32a (0.13 g, 74%) as a colorless solid. 1H NMR (400 MHz, DMSO-d6)

d 8.37 (d, J = 2.50 Hz, 1 H), 7.99 (dd, J = 9.70, 2.50 Hz, 1 H), 7.56 (d, J = 8.90 Hz, 1 H), 7.44 (d, J = 2.50 Hz, 1 H), 6.98 (dd, J =

8.90, 2.60 Hz, 1 H), 6.47 (d, J = 9.70 Hz, 1 H), 4.35 (q, J = 7.20 Hz, 2 H), 3.83 (s, 3 H), 1.37 (t, J = 7.20 Hz, 3 H); 13C NMR (100

MHz, DMSO-d6) d 163.68, 162.05, 158.67, 156.97, 148.05, 140.54, 139.33, 127.74, 119.73, 113.87, 112.22, 107.89, 107.29,

105.05, 60.96, 56.02, 14.46; MS (LCMS): m/z 313.80 (M)+.

Ethyl 5-hydroxy-2-(6-hydroxypyridin-3-yl)benzofuran-3-carboxylate (33a): The title compound was obtained from 32a and boron

tribromide as described for 14a in 65% yield after flash-chromatography (1:1 EtOAc/hexane) as an amorphous white solid. 1H NMR

(400 MHz, DMSO-d6) d 8.37 (d, J = 2.30 Hz, 1 H), 7.96 (dd, J = 9.70, 2.50 Hz, 1 H), 7.42 (d, J = 8.80 Hz, 1 H), 7.34 (d, J = 2.30 Hz, 1 H),

6.81 (dd, J = 8.80, 2.50 Hz, 1 H), 6.43 (d, J = 9.50 Hz, 1 H), 4.33 (q, J = 7.10 Hz, 2 H), 1.36 (t, J = 7.10 Hz, 3 H); 13C NMR (100 MHz,

DMSO-d6) d 163.85, 162.89, 158.70, 154.92, 147.27, 140.35, 140.02, 127.83, 119.19, 114.19, 111.79, 108.02, 107.09, 106.88, 60.78,

14.53; MS (LCMS): m/z 299.76 (M)+.

Ethyl 5-hydroxy-2-(6-hydroxypyridin-3-yl)-4-(piperidin-1-ylmethyl)benzofuran-3-carboxylate (34a) (TAM17): The title com-

poundwas obtained from 33a and piperidine as described for 13a in 74%yield after flash-chromatography (2%methanol in dichloro-

methane) as a colorless viscous liquid. 1H NMR (400 MHz, DMSO-d6) d 8.38 - 7.32 (m, 1 H), 8.19 (bs, 1 H), 8.01 - 7.90 (m, 1 H), 7.74

(dd, J = 9.6, 2.6 Hz, 1 H), 7.45 - 7.34 (m, 1 H), 6.83 (d, J = 8.8 Hz, 1 H), 6.47 (d, J = 9.5 Hz, 1 H), 4.36 - 4.25 (m, 2 H), 3.86 (s, 2 H), 2.48 -

2.33 (m, 4 H), 1.64 - 1.35 (m, 6 H), 1.28 (t, J = 7.20 Hz, 3 H). MS (LCMS): m/z 396.96 (M)+.

Ethyl 2-(3-fluoro-4-hydroxyphenyl)-5-methoxybenzofuran-3-carboxylate (32b): The title compound was obtained from 31 and

(3-fluoro-4-hydroxyphenyl)boronic acid as described for 32a and after usual work up, crude reaction mixture was passed through

a silica gel column and used as such in the next step.
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Ethyl 2-(3-fluoro-4-hydroxyphenyl)-5-hydroxybenzofuran-3-carboxylate (33b): The title compound was obtained from 32b and

borontribromide as described for 14a in 76% yield after flash-chromatography (1:1 EtOAc/hexane) as an amorphous white solid.
1H NMR (400 MHz, DMSO-d6) d 7.87 (dd, J = 12.76, 1.91 Hz, 1 H), 7.67 (dd, J = 8.58, 1.25 Hz, 1 H), 7.44 (d, J = 8.80 Hz, 1 H),

7.36 (d, J = 2.35 Hz, 1 H), 7.08 (t, J = 8.80 Hz, 1 H), 6.83 (dd, J = 8.80, 2.49 Hz, 1 H), 4.33 (q, J = 7.04 Hz, 2 H), 1.34 (t, J =

7.12 Hz, 3 H); 13C NMR (100 MHz, DMSO-d6) d 163.69, 159.83, 154.83, 151.88, 149.49, 147.54, 127.96, 126.47, 120.77, 117.83,

117.51, 114.55, 111.94, 107.80, 107.11, 60.78, 14.45; MS (LCMS): m/z 316.64 (M)+.

Ethyl 2-(3-fluoro-4-hydroxyphenyl)-5-hydroxy-4-(piperidin-1-ylmethyl)benzofuran-3-carboxylate (34b): The title compound was

obtained from 33a and piperidine as described for 13a in 74% yield after flash-chromatography (1% methanol in dichloromethane)

as an amorphous pale yellow solid. 1H NMR (400MHz, DMSO-d6) d 7.52 (dd, J = 12.32, 2.10 Hz, 1 H), 7.44 - 7.32 (m, 2 H), 7.14 - 7.05

(m, 1 H), 6.82 (d, J = 8.80 Hz, 1 H), 4.32 (q, J = 7.04 Hz, 2 H), 3.76 (s, 2 H), 2.46 - 2.25 (m, 4 H), 1.33 - 1.28 (m, 6 H), 1.26 (t, J = 7.04 Hz,

3 H); 13C NMR (100 MHz, DMSO-d6) d 165.56, 154.78, 154.27, 152.34, 149.95, 147.48, 125.92, 124.70, 120.70, 118.47, 115.70,

114.82, 114.08, 110.77, 110.15, 61.64, 55.49, 53.73 (2C), 25.81 (2C), 24.20, 14.22; MS (LCMS): m/z 413.93 (M)+.

2-(3-fluoro-4-hydroxyphenyl)-5-hydroxy-4-(piperidin-1-ylmethyl)benzofuran-3-carboxylic acid (35b): The title compound was ob-

tained from 34bwith aqueous NaOH as described for 15a.Crude reactionmixture was passed through a bed of silica gel and used as

such in the next step.

2-(3-fluoro-4-hydroxyphenyl)-5-hydroxy-N-methyl-4-(piperidin-1-ylmethyl)benzofuran-3-carboxamide (37b) (TAM18): The

title compound was obtained from 35b as described for 14a in 74% yield after flash-chromatography (2% methanol in dichlorome-

thane) as an amorphous pale brown solid. 1H NMR (400 MHz, DMSO-d6) d 8.64 (d, J = 4.7 Hz, 1 H), 7.51 - 7.32 (m, 3 H), 7.09 (t, J =

8.8 Hz, 1 H), 6.75 (d, J = 8.8 Hz, 1 H), 3.76 (s, 2 H), 2.81 (d, J = 4.5 Hz, 3 H), 3.50 - 2.28 (m, 4 H), 1.66 - 1.34 (m, 6 H); 13C NMR (100MHz,

DMSO-d6) d 166.06, 154.59, 152.55, 150.79, 150.15, 147.21, 146.58, 146.46, 126.99, 123.08, 121.48, 118.76, 114.38, 113.52,

110.71, 55.91, 53.76 (2C), 26.68 (2C), 25.78, 23.95; MS (LCMS): m/z 398.82 (M)+.

Synthesis of TAM21-TAM24

Ethyl 5-hydroxy-4-((3-(hydroxymethyl)piperidin-1-yl)methyl)-2-phenylbenzofuran-3-carboxylate (TAM21): To the solution of

12a (0.54 g, 3.0 mmol) in EtOH (10mL) was added formalin (37%, 1.2 eq.) and 3-piperidinemethanol (0.42 g, 3.75mmol). The reaction

mixture was stirred for approximately 8h at 80�C. The solution was then cooled to room temperature and diluted with water, and ex-

tracted with dichloromethane. The organic layer was dried over Na2SO4 and concentrated in vacuo. Crude residue was purified by

silica gel column chromatography (40% ethyl acetate in n-hexane) and provided the desired product (1.11 g, 90% yield) as a white

amorphous powder. 1H NMR (400MHz, DMSO) d 7.71 (dd, J = 7.9, 1.3 Hz, 2H), 7.58 – 7.46 (m, 3H), 7.42 (d, J = 8.8 Hz, 1H), 6.85 (d, J =

8.8 Hz, 1H), 4.32 (q, J = 7.1 Hz, 2H), 3.90 – 3.70 (m, 2H), 3.27 (dd, J = 10.6, 5.2 Hz, 1H), 3.21 – 3.08 (m, 1H), 2.88 (d, J = 9.8 Hz, 1H), 2.75

(d, J = 10.8 Hz, 1H), 1.94 (t, J = 10.6 Hz, 1H), 1.70 (t, J = 10.6 Hz, 1H), 1.61 (m, 3H), 1.36 (dd, J = 25.8, 13.6 Hz, 1H), 1.23 (t, J = 7.1 Hz,

3H), 0.91 (dd, J = 20.7, 11.2 Hz, 1H).13C NMR (101 MHz, DMSO) d 165.04, 154.80, 153.73, 147.40, 129.73, 129.04, 128.70, 127.17,

125.31, 114.65, 113.93, 110.80, 110.42, 64.10, 61.22, 56.39, 54.74, 53.26, 38.71, 26.77, 24.48, 13.68; MS (LCMS):m/z 409.94 (M+).

Ethyl 5-hydroxy-4-((2-(hydroxymethyl)piperidin-1-yl)methyl)-2-phenylbenzofuran-3-carboxylate (TAM22): To the solution

of 12a (0.28 g, 1.0 mmol) in EtOH (3 mL) was added formalin (37%, 1.2 eq.) and 2-piperidinemethanol (0.14 g, 1.25 mmol). The re-

action mixture was stirred for approximately 8h at 80�C. The solution was then cooled to room temperature and diluted with water,

and extracted with dichloromethane. The organic layer was dried over Na2SO4 and concentrated in vacuo. Crude residue was pu-

rified by silica gel column chromatography (40% ethyl acetate in n-hexane) and provided the desired product (0.35 g, 86% yield) as a

yellowish amorphous powder. 1H NMR (400 MHz, DMSO) d 7.70 (d, J = 7.1 Hz, 2H), 7.58 – 7.45 (m, 3H), 7.42 (d, J = 8.8 Hz, 1H), 6.82

(d, J = 8.8 Hz, 1H), 4.46 (d, J = 14.6 Hz, 1H), 4.34 (q, J = 7.0 Hz, 2H), 3.77 (d, J = 14.6 Hz, 1H), 3.60 (d, J = 4.6 Hz, 2H), 2.78 (d,J =

11.7 Hz, 1H), 2.45 (d, J = 4.3 Hz, 1H), 2.30 – 2.12 (m, 1H), 1.59 – 1.44 (m, 2H), 1.46 (dd, J = 21.9, 13.6 Hz, 2H), 1.44 – 1.29 (m,

2H), 1.24 (t, J = 7.1 Hz, 3H).13C NMR (101 MHz, DMSO) d 165.51, 163.23, 154.77, 154.55, 147.20, 129.80, 128.97, 128.78,

128.43, 127.02, 125.07, 114.98, 113.11, 110.54, 110.19, 61.95, 61.52, 61.19, 51.42, 50.49, 27.25, 24.11, 22.20, 13.66; m/z 409.

87 (M+).

Ethyl 5-hydroxy-4-((3-(hydroxymethyl)piperidin-1-yl)methyl)-2-(4-hydroxyphenyl)benzofuran-3-carboxylate (TAM23): To

the solution of 12b (0.31 g, 1.0 mmol) in EtOH (3 mL) was added formalin (37%, 1.2 eq.) and 3-piperidinemethanol (0.14 g,

1.25 mmol). The reaction mixture was stirred for approximately 8h at 80�C. The solution was then cooled to room temperature

and diluted with water, and extracted with dichloromethane. The organic layer was dried over Na2SO4 and concentrated in vacuo.

Crude residue was purified by silica gel column chromatography (40% ethyl acetate in n-hexane) and provided the desired product

(0.28 g, 66% yield). 1H NMR (400 MHz, DMSO) d 7.54 (d, J = 8.6 Hz, 2H), 7.35 (d, J = 8.8 Hz, 1H), 6.88 (d, J = 8.5 Hz, 2H), 6.78 (d, J =

8.8 Hz, 1H), 4.30 (d, J = 7.1 Hz, 1H), 3.94 – 3.63 (m, 2H), 3.25 (dd, J = 10.4, 4.9 Hz, 1H), 3.22 – 3.06 (m, 1H), 2.87 (d, J = 11.5 Hz, 1H),

2.74 (d, J = 11.1 Hz, 1H), 1.93 (t, J = 11.0 Hz, 1H), 1.83 – 1.48 (m, 4H), 1.36 (dd, J = 24.3, 9.8 Hz, 1H), 1.24 (t, J = 7.1 Hz, 3H), 0.90 (d, J =

9.7 Hz, 1H).13C NMR (101 MHz, DMSO) d 165.85, 164.56, 159.56, 156.19, 154.20, 147.49, 130.05, 129.42, 126.12, 120.30, 116.05,

114.39, 114.08, 110.65, 109.32, 64.62, 61.56, 56.90, 55.45, 53.77, 39.24, 27.29, 25.00, 14.29; MS (LCMS): m/z 425.97 (M+).

5-Hydroxy-4-((3-(hydroxymethyl)piperidin-1-yl)methyl)-N-methyl-2-phenylbenzofuran-3-carboxamide (TAM24): To the so-

lution of ester derivative TAM21 (0.82 g, 2.0 mmol) in EtOH (10mL), a solution of NaOH (0.34 g, 8.43mmol) in water (5 mL) was added

and the resulting mixture was refluxed for 4 hr. After the completion of the reaction, reaction mixture was allowed to cool to room

temperature and poured into ice cold water. Neutralization with dil. HCl solution resulted in precipitation of white acid. Acid so
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obtained was filtered, washed with water and dried and directly used for next step.To the solution of acid (0.38 g, 1.0 mmol) in di-

chloromethane (10 mL) was added oxalyl chloride (0.11 mL, 1.41 mmol) and N,N-dimethylformaide (2 drops) was added at 0�C
and stirred at room temperature for 3h. The reaction mixture was evaporated under reduced pressure. The residue was re-dissolved

in THF (10mL) and a solution of methylamine (0.75 mL, 2.0 M in THF) was added and the mixture was stirred for 2h. After the comple-

tion of reaction, solvent was evaporated. Water was added and extracted with dichloromethane. The organic layer was dried over

Na2SO4 and concentrated in vacuo. Crude residue was purified by silica gel column chromatography (1%–3%methanol in dichloro-

methane) to provide the desired product (0.28 g, 71% yield) as a pale yellow amorphous solid. 1H NMR (400 MHz, DMSO) d 8.65

(d, J = 4.6 Hz, 1H), 7.77 – 7.72 (m, 2H), 7.50 (t, J = 7.5 Hz, 2H), 7.41 (dd, J = 11.8, 5.8 Hz, 2H), 6.78 (d, J = 8.8 Hz, 1H), 3.90 – 3.75

(m, 2H), 3.30 (dd, J = 10.6, 5.2 Hz, 1H), 3.19 (dd, J = 10.6, 7.1 Hz, 1H), 3.00 (d, J = 10.1 Hz, 1H), 2.94 – 2.83 (m, 1H), 2.79 s, 3H),

2.13 – 2.00 (m, 1H), 1.84 (t, J = 10.7 Hz, 1H), 1.67 (dd, J = 16.9, 6.8 Hz, 3H), 1.50 (dd, J = 16.1, 8.1 Hz, 1H), 0.98 (dd, J = 21.8,

11.7 Hz, 1H).13C NMR (101 MHz, DMSO) d 166.06, 163.88, 154.67, 151.51, 147.51, 129.94, 129.57, 129.42, 126.93, 126.26,

114.83, 114.71, 112.69, 111.02, 64.42, 56.78, 55.82, 53.74, 39.11, 26.88, 26.71, 24.77; MS (LCMS): m/z 494.97 (M+).

Purity of TAM1 analogs as determined by HPLC using Water/Acetonitrile (0.1% Formic and 0.1% Ammonium Formate Acid).

QUANTIFICATION AND STATISTICAL ANALYSIS

All potency determinations and dose response curves were produced using Prism 5.0 (GraphPad Software). Animal efficacy data

were analyzed using Prism 4.0 (GraphPad) and SigmaPlot 11.0 (Jandel Corporation) software. Number of samples and statistical

tests used are provided in the STAR Methods.

DATA AND SOFTWARE AVAILABILITY

Atomic coordinates and structure factors for the reported crystal structures have been deposited with the Protein Data Bank under

accession codes PDB: 5V3W (Apo Pks13-TE), PDB: 5V3X (Pks13-TE:TAM1), PDB: 5V3Y (Pks13-TE:TAM16), PDB: 5V3Z (Pks13-

TE(D1607N)), PDB: 5V40 (Pks13-TE:TAM6), PDB: 5V41 (Pks13-TE:TAM5), and PDB: 5V42 (Pks13-TE:TAM3).

Compound Rt (min) Purity (%)

9a/TAM8 4.83 97.5

9b/TAM11 5.47 97.3

13a/TAM9 4.18 97.7

14b/TAM13 3.87 96.4

15a/TAM10 2.93 97.5

16a/TAM12 3.48 97.6

17b/TAM16 2.98 98.6

18a/TAM14 4.64 96.8

20a/TAM15 4.71 97.8

26a/TAM20 3.83 99.1

34a/TAM17 2.76 96.2

37b/TAM18 2.84 98.3

TAM21 3.26 97.5

TAM22 3.37 96.8

TAM23 2.76 97.8

TAM24 2.68 98.9
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Supplemental Figures

Figure S1. Structural Features of the Pks13-TE Crystal Structure, Related to Figure 1

(A) Surface representation of the Pks13-TE structure colored by electrostatic potential (contoured at± 5 kT/e; red for negative and blue for positive) to illustrate the

substrate binding groove (�30 Å, double-headed yellow arrow) on the lid domain. The zoomed view shows the bound PPG fragment (cyan) in the catalytic pocked

formed by residues Ser1533, His1699 and Asp1560 alongwith the residues of the oxyanion-hole (Leu1534 and Ala1477) rendered as sticks; catalytic water shown

as red sphere. The 2Fo-Fc electron density map contoured at 1.2s is shown for the bound PPG fragment. Hydrogen bond interactions are shown as black

dashed lines.

(B) Predicted tunnels in Pks13-TE structure by CAVER analysis (Chovancova et al., 2012). The three potential tunnels are shown in pink, blue and green surface

rendering. The largest of the tunnels (pink) opens onto the substrate binding surface groove and contained the bound PPG fragment.

(C) Docking of mycolic acid on Pks13-TE lid domain. A molecule of mycolic acid (shown as yellow sticks) was docked using Molsoft ICM-Pro software to

determine a possible binding mode in the substrate binding groove. The zoomed view of the docking indicates that the surface groove can accommodate acyl

chains of the mycolic acid precursor attached to the C-terminal ACP domain and position the thioester for cleavage near the catalytic Ser1533 residue.



Figure S2. Structural Changes in TAM1-Bound and D1607N-Mutant Pks13-TE Crystal Structures, Related to Figure 1

(A) Superimposition of Pks13-TE-TAM1 complex structure (purple) with Apo-Pks13-TE structure (yellow) shows that Phe1670 side chain (shown as stick) flips by

�80� upon TAM1 binding. TAM1 interacting residues are shown in line representation in purple color, and the corresponding residues from Apo structure are

shown as lines in yellow color. Catalytic residues (Ser1533 and His1699) are shown as ball and sticks. TAM1 is omitted for clarity of presentation.

(B) Superimposition of Pks13-TE-TAM1 complex structure (purple, TAM1 as yellow sticks) with the structure of D1607N mutant (pink) shows the conformational

change in Arg1641 of the mutant due to disruption of ion pair interaction with Asp1607. In the wt Pks13-TE structure, Asp1607 carboxylate forms an ion pair

interaction with the guanidinium of Arg1641which helps stabilize theC-terminal end of helix a7. This allows Asp1644 to form hydrogen bond interaction (shown as

dashed black line) with TAM1. The mutation D1607N breaks the ion pair interaction mediated anchoring of helix a7 that causes Asp1644 to move away by �3 Å

(double-headed black arrow), consequently disrupting its interaction with TAM1.



Figure S3. Metabolic Stability of TAM1 Analogs, Related to Table 3

(A) Metabolic stability studies of TAM12 in mouse liver microsomes showed that TAM12 was hydroxylated at P1 phenyl. Graph represents mean values ± SD of

two independent assays.

(B) Cartoon of the Pks13-TE-TAM16 complex structure showing hydrogen bond interaction between P1 4-OH of TAM16 (cyan) and the side chain carbonyl

oxygen atom of Gln1633 (green). The gray mesh represents the 2mFo - DFc maximum-likelihood omit map, contoured at 1.2s. Hydrogen bonds are shown as

black dashed lines.

(C) Glucuronidation of TAM16was assessed inmouse liver microsomeswith UDPGA (5 mM for 60min). At 0, 30 and 60min, 100 mL aliquots of the reactionmixture

were removed and placed in 100 mL of acetonitrile to terminate the reaction. Analysis by mass spectrometry for metabolite identification showed little metabolism

of the parent compound (TAM16), the conjugate was barely detectable after 60 min incubation (peak A).

(D and E)Metabolic stability analysis of TAM16 incubated with glutathione andmethoxylamine (50 mM for 180min) in the presence of mouse plasma and HLMs for

possible retro-Mannich metabolites or adducts. The parent compound was seen to decrease slightly over time and two metabolites were detected. For

metabolite B themain ion see was at m/z 379 but a barely detectable ion was seen at m/z 397 indicating themetabolite may be due to oxidation which dehydrates

readily in the MS. No trace of the quinone-methide or potential GSH adducts was seen in any of the samples.
a% of total peak area for parent and metabolite peaks of the proposed [M+H]+ ions at 60 min time point.
b% of total peak area for parent and metabolite peaks of the proposed [M+H]+ ions at 180 min time point.



Figure S4. In Vivo Pharmacokinetics of TAM16, Related to Table 3

Mean blood concentration profiles of TAM16 following oral (p.o) and iv dose of 10 mg/kg and 3 mg/kg, respectively, in female BALB/c mouse. PK parameters

(inset) were determined after the administration of a single dose (both p.o and iv) to mice. Cmax, maximum concentration; Tmax, time to reach Cmax, tð1=2Þ, half-life;
AUC, area under the concentration curve; Vss, volume of distribution at steady state.



Figure S5. Effect of TAM16 Treatment on Mice in Acute BALB/c Model, Related to Figure 3A

(A) Lung gross pathology images from untreated control (vehicle only) and treatedmice. Untreated mice were moribund 1 week after treatment initiation (3 weeks

post-infection) and were euthanized in accordance with institutional animal care regulations. INH, isoniazid.

(B andC) Effect of drug treatment onmean lung weights and, (C) mean body weights inM. tuberculosis infectedmice (n = 5 per time point per group) after 2 weeks

of treatment. Mice were infected on Day �13 and treatment was initiated on D0 (2 weeks after infection). Graphs represent mean values ± SD.
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