237 research outputs found

    A random forest approach to estimate daily particulate matter, nitrogen dioxide, and ozone at fine spatial resolution in Sweden

    Get PDF
    Air pollution is one of the leading causes of mortality worldwide. An accurate assessment of its spatial and temporal distribution is mandatory to conduct epidemiological studies able to estimate long-term (e.g., annual) and short-term (e.g., daily) health effects. While spatiotemporal models for particulate matter (PM) have been developed in several countries, estimates of daily nitrogen dioxide (NO 2 ) and ozone (O 3 ) concentrations at high spatial resolution are lacking, and no such models have been developed in Sweden. We collected data on daily air pollutant concentrations from routine monitoring networks over the period 2005-2016 and matched them with satellite data, dispersion models, meteorological parameters, and land-use variables. We developed a machine-learning approach, the random forest (RF), to estimate daily concentrations of PM 10 (PM<10 microns), PM 2.5 (PM<2.5 microns), PM 2.5-10 (PM between 2.5 and 10 microns), NO 2 , and O 3 for each squared kilometer of Sweden over the period 2005-2016. Our models were able to describe between 64% (PM 10 ) and 78% (O 3 ) of air pollutant variability in held-out observations, and between 37% (NO 2 ) and 61% (O 3 ) in held-out monitors, with no major differences across years and seasons and better performance in larger cities such as Stockholm. These estimates will allow to investigate air pollution effects across the whole of Sweden, including suburban and rural areas, previously neglected by epidemiological investigation

    Socioeconomic Inequalities in Mortality Rates in Old Age in the World Health Organization Europe Region

    No full text
    Socioeconomic adversity is among the foremost fundamental causes of human suffering, and this is no less true in old age. Recent reports on socioeconomic inequalities in mortality rate in old age suggest that a low socioeconomic position continues to increase the risk of death even among the oldest old. We aimed to examine the evidence for socioeconomic mortality rate inequalities in old age, including information about associations with various indicators of socioeconomic position and for various geographic locations within the World Health Organization Region for Europe. The articles included in this review leave no doubt that inequalities in mortality rate by socioeconomic position persist into the oldest ages for both men and women in all countries for which information is available, although the relative risk measures observed were rarely higher than 2.00. Still, the available evidence base is heavily biased geographically, inasmuch as it is based largely on national studies from Nordic and Western European countries and local studies from urban areas in Southern Europe. This bias will hamper the design of European-wide policies to reduce inequalities in mortality rate. We call for a continuous update of the empiric evidence on socioeconomic inequalities in mortality rate

    Vulnerability to heat-related mortality: a multicity, population-based, case-crossover analysis.

    Get PDF

    Assessment and prevention of acute health effects of weather conditions in Europe, the PHEWE project: background, objectives, design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The project "Assessment and prevention of acute health effects of weather conditions in Europe" (PHEWE) had the aim of assessing the association between weather conditions and acute health effects, during both warm and cold seasons in 16 European cities with widely differing climatic conditions and to provide information for public health policies.</p> <p>Methods</p> <p>The PHEWE project was a three-year pan-European collaboration between epidemiologists, meteorologists and experts in public health. Meteorological, air pollution and mortality data from 16 cities and hospital admission data from 12 cities were available from 1990 to 2000. The short-term effect on mortality/morbidity was evaluated through city-specific and pooled time series analysis. The interaction between weather and air pollutants was evaluated and health impact assessments were performed to quantify the effect on the different populations. A heat/health watch warning system to predict oppressive weather conditions and alert the population was developed in a subgroup of cities and information on existing prevention policies and of adaptive strategies was gathered.</p> <p>Results</p> <p>Main results were presented in a symposium at the conference of the International Society of Environmental Epidemiology in Paris on September 6<sup>th </sup>2006 and will be published as scientific articles. The present article introduces the project and includes a description of the database and the framework of the applied methodology.</p> <p>Conclusion</p> <p>The PHEWE project offers the opportunity to investigate the relationship between temperature and mortality in 16 European cities, representing a wide range of climatic, socio-demographic and cultural characteristics; the use of a standardized methodology allows for direct comparison between cities.</p

    Socioeconomic differentials in the immediate mortality effects of the national Irish smoking ban

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Background: Consistent evidence has demonstrated that smoking ban policies save lives, but impacts on health inequalities are uncertain as few studies have assessed post-ban effects by socioeconomic status (SES) and findings have been inconsistent. The aim of this study was to assess the effects of the national Irish smoking ban on ischemic heart disease (IHD), stroke, and chronic obstructive pulmonary disease (COPD) mortality by discrete and composite SES indicators to determine impacts on inequalities. Methods: Census data were used to assign frequencies of structural and material SES indicators to 34 local authorities across Ireland with a 2000–2010 study period. Discrete indicators were jointly analysed through principal component analysis to generate a composite index, with sensitivity analyses conducted by varying the included indicators. Poisson regression with interrupted time-series analysis was conducted to examine monthly age and gender-standardised mortality rates in the Irish population, ages ≥35 years, stratified by tertiles of SES indicators. All models were adjusted for time trend, season, influenza, and smoking prevalence. Results: Post-ban mortality reductions by structural SES indicators were concentrated in the most deprived tertile for all causes of death, while reductions by material SES indicators were more equitable across SES tertiles. The composite indices mirrored the results of the discrete indicators, demonstrating that post-ban mortality decreases were either greater or similar in the most deprived when compared to the least deprived for all causes of death. Conclusions: Overall findings indicated that the national Irish smoking ban reduced inequalities in smoking-related mortality. Due to the higher rates of smoking-related mortality in the most deprived group, even equitable reductions across SES tertiles resulted in decreases in inequalities. The choice of SES indicator was influential in the measurement of effects, underscoring that a differentiated analytical approach aided in understanding the complexities in which structural and material factors influence mortality

    Cause specific mortality in an Italian pool of asbestos workers cohorts

    Get PDF
    Background Asbestos is a known human carcinogen and is causally associated with malignant mesothelioma, lung, larynx and ovarian cancers.Methods Cancer risk was studied among a pool of formerly asbestos-exposed workers in Italy. Fifty-two Italian asbestos cohorts (asbestos-cement, rolling-stock, shipbuilding, and other) were pooled and their mortality follow-up was updated to 2018. Standardized mortality ratios (SMRs) were computed for major causes of death considering duration of exposure and time since first exposure (TSFE), using reference rates by region, age and calendar period.Results The study included 63,502 subjects (57,156 men and 6346 women): 40% who were alive, 58% who died (cause known for 92%), and 2% lost to follow-up. Mortality was increased for all causes (SMR: men = 1.04, 95% confidence interval [CI] 1.03-1.05; women = 1.15, 95% CI 1.11-1.18), all malignancies (SMR: men = 1.21, 95% CI 1.18-1.23; women = 1.29, 95% CI 1.22-1.37), pleural and peritoneal malignancies (men: SMR = 10.46, 95% CI 9.86-11.09 and 4.29, 95% CI 3.66-5.00; women: SMR = 27.13, 95% CI 23.29-31.42 and 7.51, 95% CI 5.52-9.98), lung (SMR: men = 1.28, 95% CI 1.24-1.32; women = 1.26, 95% CI 1.02-1.53), and ovarian cancer (SMR = 1.42, 95% CI 1.08-1.84). Pleural cancer mortality increased during the first 40 years of TSFE (latency), reaching a plateau thereafter.Conclusions Analyses by time-dependent variables showed that the risk for pleural neoplasms increased with latency and no longer increases at long TSFE, consistent with with asbestos clearance from the lungs. Peritoneal neoplasm risk increased over all observation time

    An ecological time-series study of heat-related mortality in three European cities

    Get PDF
    BACKGROUND: Europe has experienced warmer summers in the past two decades and there is a need to describe the determinants of heat-related mortality to better inform public health activities during hot weather. We investigated the effect of high temperatures on daily mortality in three cities in Europe (Budapest, London, and Milan), using a standard approach. METHODS: An ecological time-series study of daily mortality was conducted in three cities using Poisson generalized linear models allowing for over-dispersion. Secular trends in mortality and seasonal confounding factors were controlled for using cubic smoothing splines of time. Heat exposure was modelled using average values of the temperature measure on the same day as death (lag 0) and the day before (lag 1). The heat effect was quantified assuming a linear increase in risk above a cut-point for each city. Socio-economic status indicators and census data were linked with mortality data for stratified analyses. RESULTS: The risk of heat-related death increased with age, and females had a greater risk than males in age groups > or =65 years in London and Milan. The relative risks of mortality (per degrees C) above the heat cut-point by gender and age were: (i) Male 1.10 (95%CI: 1.07-1.12) and Female 1.07 (1.05-1.10) for 75-84 years, (ii) M 1.10 (1.06-1.14) and F 1.08 (1.06-1.11) for > or = or =85 years in Budapest (> or =24 degrees C); (i) M 1.03 (1.01-1.04) and F 1.07 (1.05-1.09), (ii) M 1.05 (1.03-1.07) and F 1.08 (1.07-1.10) in London (> or =20 degrees C); and (i) M 1.08 (1.03-1.14) and F 1.20 (1.15-1.26), (ii) M 1.18 (1.11-1.26) and F 1.19 (1.15-1.24) in Milan (> or =26 degrees C). Mortality from external causes increases at higher temperatures as well as that from respiratory and cardiovascular disease. There was no clear evidence of effect modification by socio-economic status in either Budapest or London, but there was a seemingly higher risk for affluent non-elderly adults in Milan. CONCLUSION: We found broadly consistent determinants (age, gender, and cause of death) of heat related mortality in three European cities using a standard approach. Our results are consistent with previous evidence for individual determinants, and also confirm the lack of a strong socio-economic gradient in heat health effects currently in Europe
    corecore