118 research outputs found
The Quality of Naps in Young Children with Sleeping Difficulties: the Role of Parents and Preschools
Minimal research exists in regards to day-time naps in children, and to date no
research has examined the architecture of naps in children. The present study examined the
quality of naps in the preschool environment compared to the home environment in children
with sleeping difficulties. The participants were three children aged 1 year, 8 months to 2
years, 2 months. The naps were digitally recorded in the children’s homes and their
preschool. The digital recordings were coded using a sleep coding system, which established
the sleep states and patterns of the naps. The results indicated that the naps were individually
distinctive and varied across the children and across the environments. The majority of sleep
times were spent in quiet sleep compared to active sleep. The most consistent finding was
that the mean length of sleep (where sleep occurred during nap time) for each child was
longer in the home environment than the preschool environment. Caregiver behaviour across
the environments shared similarities. Children with sleeping difficulties were chosen for this
study as they represent a more challenging population for parents and teachers. It is possible
that the sleeping difficulties may have overridden the differences in sleeping environments.
This is an interesting and important area of future research
P2Y<sub>12</sub>-dependent activation of hematopoietic stem and progenitor cells promotes emergency hematopoiesis after myocardial infarction
Emergency hematopoiesis is the driving force of the inflammatory response to myocardial infarction (MI). Increased proliferation of hematopoietic stem and progenitor cells (LSK) after MI enhances cell production in the bone marrow (BM) and replenishes leukocyte supply for local cell recruitment to the infarct. Decoding the regulation of the inflammatory cascade after MI may provide new avenues to improve post-MI remodeling. In this study, we describe the influence of adenosine diphosphate (ADP)-dependent P2Y12-mediated signaling on emergency hematopoiesis and cardiac remodeling after MI. Permanent coronary ligation was performed to induce MI in a murine model. BM activation, inflammatory cell composition and cardiac function were assessed using global and platelet-specific gene knockout and pharmacological inhibition models for P2Y12. Complementary in vitro studies allowed for investigation of ADP-dependent effects on LSK cells. We found that ADP acts as a danger signal for the hematopoietic BM and fosters emergency hematopoiesis by promoting Akt phosphorylation and cell cycle progression. We were able to detect P2Y12 in LSK, implicating a direct effect of ADP on LSK via P2Y12 signaling. P2Y12 knockout and P2Y12 inhibitor treatment with prasugrel reduced emergency hematopoiesis and the excessive inflammatory response to MI, translating to lower numbers of downstream progeny and inflammatory cells in the blood and infarct. Ultimately, P2Y12 inhibition preserved cardiac function and reduced chronic adverse cardiac remodeling after MI. P2Y12-dependent signaling is involved in emergency hematopoiesis after MI and fuels post-ischemic inflammation, proposing a novel, non-canonical value for P2Y12 antagonists beyond inhibition of platelet-mediated atherothrombosis
Activated Platelets in Carotid Artery Thrombosis in Mice Can Be Selectively Targeted with a Radiolabeled Single-Chain Antibody
BACKGROUND: Activated platelets can be found on the surface of inflamed, rupture-prone and ruptured plaques as well as in intravascular thrombosis. They are key players in thrombosis and atherosclerosis. In this study we describe the construction of a radiolabeled single-chain antibody targeting the LIBS-epitope of activated platelets to selectively depict platelet activation and wall-adherent non-occlusive thrombosis in a mouse model with nuclear imaging using in vitro and ex vivo autoradiography as well as small animal SPECT-CT for in vivo analysis. METHODOLOGY/PRINCIPAL FINDINGS: LIBS as well as an unspecific control single-chain antibody were labeled with (111)Indium ((111)In) via bifunctional DTPA ( = (111)In-LIBS/(111)In-control). Autoradiography after incubation with (111)In-LIBS on activated platelets in vitro (mean 3866 ± 28 DLU/mm(2), 4010 ± 630 DLU/mm(2) and 4520 ± 293 DLU/mm(2)) produced a significantly higher ligand uptake compared to (111)In-control (2101 ± 76 DLU/mm(2), 1181 ± 96 DLU/mm(2) and 1866 ± 246 DLU/mm(2)) indicating a specific binding to activated platelets; P<0.05. Applying these findings to an ex vivo mouse model of carotid artery thrombosis revealed a significant increase in ligand uptake after injection of (111)In-LIBS in the presence of small thrombi compared to the non-injured side, as confirmed by histology (49630 ± 10650 DLU/mm(2) vs. 17390 ± 7470 DLU/mm(2); P<0.05). These findings could also be reproduced in vivo. SPECT-CT analysis of the injured carotid artery with (111)In-LIBS resulted in a significant increase of the target-to-background ratio compared to (111)In-control (1.99 ± 0.36 vs. 1.1 ± 0.24; P < 0.01). CONCLUSIONS/SIGNIFICANCE: Nuclear imaging with (111)In-LIBS allows the detection of platelet activation in vitro and ex vivo with high sensitivity. Using SPECT-CT, wall-adherent activated platelets in carotid arteries could be depicted in vivo. These results encourage further studies elucidating the role of activated platelets in plaque pathology and atherosclerosis and might be of interest for further developments towards clinical application
Report on the second International Consensus on ANA Pattern (ICAP) workshop in Dresden 2015
The second meeting for the International Consensus on Antinuclear antibody (ANA) Pattern (ICAP) was held on 22 September 2015, one day prior to the opening of the 12th Dresden Symposium on Autoantibodies in Dresden, Germany. The ultimate goal of ICAP is to promote harmonization and understanding of autoantibody nomenclature, and thereby optimizing ANA usage in patient care. The newly developed ICAP website www.ANApatterns.org was introduced to the more than 50 participants. This was followed by several presentations and discussions focusing on key issues including the two-tier classification of ANA patterns into competent-level versus expert-level, the consideration of how to report composite versus mixed ANA patterns, and the necessity for developing a consensus on how ANA results should be reported. The need to establish on-line training modules to help users gain competency in identifying ANA patterns was discussed as a future addition to the website. To advance the ICAP goal of promoting wider international participation, it was agreed that there should be a consolidated plan to translate consensus documents into other languages by recruiting help from members of the respective communities
Wild dogs at stake: deforestation threatens the only Amazon endemic canid, the short-eared dog (Atelocynus microtis)
The persistent high deforestation rate and fragmentation of the Amazon forests are the main threats to their biodiversity. To anticipate and mitigate these threats, it is important to understand and predict how species respond to the rapidly changing landscape. The short-eared dog Atelocynus microtis is the only Amazon-endemic canid and one of the most understudied wild dogs worldwide. We investigated short-eared dog habitat associations on two spatial scales. First, we used the largest record database ever compiled for short-eared dogs in combination with species distribution models to map species habitat suitability, estimate its distribution range and predict shifts in species distribution in response to predicted deforestation across the entire Amazon (regional scale). Second, we used systematic camera trap surveys and occupancy models to investigate how forest cover and forest fragmentation affect the space use of this species in the Southern Brazilian Amazon (local scale). Species distribution models suggested that the short-eared dog potentially occurs over an extensive and continuous area, through most of the Amazon region south of the Amazon River. However, approximately 30% of the short-eared dog's current distribution is expected to be lost or suffer sharp declines in habitat suitability by 2027 (within three generations) due to forest loss. This proportion might reach 40% of the species distribution in unprotected areas and exceed 60% in some interfluves (i.e. portions of land separated by large rivers) of the Amazon basin. Our local-scale analysis indicated that the presence of forest positively affected short-eared dog space use, while the density of forest edges had a negative effect. Beyond shedding light on the ecology of the short-eared dog and refining its distribution range, our results stress that forest loss poses a serious threat to the conservation of the species in a short time frame. Hence, we propose a re-assessment of the short-eared dog's current IUCN Red List status (Near Threatened) based on findings presented here. Our study exemplifies how data can be integrated across sources and modelling procedures to improve our knowledge of relatively understudied species
Do linden trees kill bees? Reviewing the causes of bee deaths on silver linden (Tilia tomentosa)
For decades, linden trees (basswoods or lime trees), and particularly silver linden (Tilia tomentosa), have been linked to mass bee deaths. This phenomenon is often attributed to the purported occurrence of the carbohydrate mannose, which is toxic to bees, in Tilia nectar. In this review, however, we conclude that from existing literature there is no experimental evidence for toxicity to bees in linden nectar. Bee deaths on Tilia probably result from starvation, owing to insufficient nectar resources late in the tree's flowering period. We recommend ensuring sufficient alternative food sources in cities during late summer to reduce bee deaths on silver linden. Silver linden metabolites such as floral volatiles, pollen chemistry and nectar secondary compounds remain underexplored, particularly their toxic or behavioural effects on bees. Some evidence for the presence of caffeine in linden nectar may mean that linden trees can chemically deceive foraging bees to make sub-optimal foraging decisions, in some cases leading to their starvation
- …