307 research outputs found

    Competition-based model of pheromone component ratio detection in the moth

    Get PDF
    For some moth species, especially those closely interrelated and sympatric, recognizing a specific pheromone component concentration ratio is essential for males to successfully locate conspecific females. We propose and determine the properties of a minimalist competition-based feed-forward neuronal model capable of detecting a certain ratio of pheromone components independently of overall concentration. This model represents an elementary recognition unit for the ratio of binary mixtures which we propose is entirely contained in the macroglomerular complex (MGC) of the male moth. A set of such units, along with projection neurons (PNs), can provide the input to higher brain centres. We found that (1) accuracy is mainly achieved by maintaining a certain ratio of connection strengths between olfactory receptor neurons (ORN) and local neurons (LN), much less by properties of the interconnections between the competing LNs proper. An exception to this rule is that it is beneficial if connections between generalist LNs (i.e. excited by either pheromone component) and specialist LNs (i.e. excited by one component only) have the same strength as the reciprocal specialist to generalist connections. (2) successful ratio recognition is achieved using latency-to-first-spike in the LN populations which, in contrast to expectations with a population rate code, leads to a broadening of responses for higher overall concentrations consistent with experimental observations. (3) when longer durations of the competition between LNs were observed it did not lead to higher recognition accuracy

    Data-driven honeybee antennal lobe model suggests how stimulus-onset asynchrony can aid odour segregation

    Get PDF
    Insects have a remarkable ability to identify and track odour sources in multi-odour backgrounds. Recent behavioural experiments show that this ability relies on detecting millisecond stimulus asynchronies between odourants that originate from different sources. Honeybees, Apis mellifera , are able to distinguish mixtures where both odourants arrive at the same time (synchronous mixtures) from those where odourant onsets are staggered (asynchronous mixtures) down to an onset delay of only 6 ms. In this paper we explore this surprising ability in a model of the insects' primary olfactory brain area, the antennal lobe. We hypothesize that a winner-take-all inhibitory network of local neurons in the antennal lobe has a symmetry-breaking effect, such that the response pattern in projection neurons to an asynchronous mixture is different from the response pattern to the corresponding synchronous mixture for an extended period of time beyond the initial odourant onset where the two mixture conditions actually differ. The prolonged difference between response patterns to synchronous and asynchronous mixtures could facilitate odour segregation in downstream circuits of the olfactory pathway. We present a detailed data-driven model of the bee antennal lobe that reproduces a large data set of experimentally observed physiological odour responses, successfully implements the hypothesised symmetry-breaking mechanism and so demonstrates that this mechanism is consistent with our current knowledge of the olfactory circuits in the bee brain

    Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics.

    Get PDF
    Novel metabolites distinct from canonical pathways can be identified through the integration of three cheminformatics tools: BinVestigate, which queries the BinBase gas chromatography-mass spectrometry (GC-MS) metabolome database to match unknowns with biological metadata across over 110,000 samples; MS-DIAL 2.0, a software tool for chromatographic deconvolution of high-resolution GC-MS or liquid chromatography-mass spectrometry (LC-MS); and MS-FINDER 2.0, a structure-elucidation program that uses a combination of 14 metabolome databases in addition to an enzyme promiscuity library. We showcase our workflow by annotating N-methyl-uridine monophosphate (UMP), lysomonogalactosyl-monopalmitin, N-methylalanine, and two propofol derivatives

    A biophysical model of the early olfactory system of honeybees

    Get PDF
    Experimental measurements often can only provide limited data from an animal’s sensory system. In addition, they exhibit large trial-to-trial and animal-to-animal variability. These limitations pose challenges to building mathematical models intended to make biologically relevant predictions. Here, we present a mathematical model of the early olfactory system of honeybees aiming to overcome these limitations. The model generates olfactory response patterns which conform to the statistics derived from experimental data for a variety of their properties. This allows considering the full dimensionality of the sensory input space as well as avoiding overfitting the underlying data sets. Several known biological mechanisms, including processes of chemical binding and activation of receptors, and spike generation and transmission in the antennal lobe network, are incorporated in the model at a minimal level. It can therefore be used to study how experimentally observed phenomena are shaped by these underlying biophysical processes. We verified that our model can replicate some key experimental findings that were not used when building it. Given appropriate data, our model can be generalized to the early olfactory systems of other insects. It hence provides a possible framework for future numerical and analytical studies of olfactory processing in insects

    Neurogenesis Drives Stimulus Decorrelation in a Model of the Olfactory Bulb

    Get PDF
    The reshaping and decorrelation of similar activity patterns by neuronal networks can enhance their discriminability, storage, and retrieval. How can such networks learn to decorrelate new complex patterns, as they arise in the olfactory system? Using a computational network model for the dominant neural populations of the olfactory bulb we show that fundamental aspects of the adult neurogenesis observed in the olfactory bulb -- the persistent addition of new inhibitory granule cells to the network, their activity-dependent survival, and the reciprocal character of their synapses with the principal mitral cells -- are sufficient to restructure the network and to alter its encoding of odor stimuli adaptively so as to reduce the correlations between the bulbar representations of similar stimuli. The decorrelation is quite robust with respect to various types of perturbations of the reciprocity. The model parsimoniously captures the experimentally observed role of neurogenesis in perceptual learning and the enhanced response of young granule cells to novel stimuli. Moreover, it makes specific predictions for the type of odor enrichment that should be effective in enhancing the ability of animals to discriminate similar odor mixtures

    Queen mandibular pheromone: questions that remain to be resolved

    No full text
    The discovery of ‘queen substance’, and the subsequent identification and synthesis of keycomponents of queen mandibular pheromone, has been of significant importance to beekeepers and to thebeekeeping industry. Fifty years on, there is greater appreciation of the importance and complexity of queenpheromones, but many mysteries remain about the mechanisms through which pheromones operate. Thediscovery of sex pheromone communication in moths occurred within the same time period, but in this case,intense pressure to find better means of pest management resulted in a remarkable focusing of research activityon understanding pheromone detection mechanisms and the central processing of pheromone signals in themoth. We can benefit from this work and here, studies on moths are used to highlight some of the gaps in ourknowledge of pheromone communication in bees. A better understanding of pheromone communication inhoney bees promises improved strategies for the successful management of these extraordinary animals

    Emergence of Connectivity Motifs in Networks of Model Neurons with Short- and Long-term Plastic Synapses

    Get PDF
    Recent evidence in rodent cerebral cortex and olfactory bulb suggests that short-term dynamics of excitatory synaptic transmission is correlated to stereotypical connectivity motifs. It was observed that neurons with short-term facilitating synapses form predominantly reciprocal pairwise connections, while neurons with short-term depressing synapses form unidirectional pairwise connections. The cause of these structural differences in synaptic microcircuits is unknown. We propose that these connectivity motifs emerge from the interactions between short-term synaptic dynamics (SD) and long-term spike-timing dependent plasticity (STDP). While the impact of STDP on SD was shown in vitro, the mutual interactions between STDP and SD in large networks are still the subject of intense research. We formulate a computational model by combining SD and STDP, which captures faithfully short- and long-term dependence on both spike times and frequency. As a proof of concept, we simulate recurrent networks of spiking neurons with random initial connection efficacies and where synapses are either all short-term facilitating or all depressing. For identical background inputs, and as a direct consequence of internally generated activity, we find that networks with depressing synapses evolve unidirectional connectivity motifs, while networks with facilitating synapses evolve reciprocal connectivity motifs. This holds for heterogeneous networks including both facilitating and depressing synapses. Our study highlights the conditions under which SD-STDP might the correlation between facilitation and reciprocal connectivity motifs, as well as between depression and unidirectional motifs. We further suggest experiments for the validation of the proposed mechanism

    Determination of nutrient salts by automatic methods both in seawater and brackish water: the phosphate blank

    Get PDF
    9 páginas, 2 tablas, 2 figurasThe main inconvenience in determining nutrients in seawater by automatic methods is simply solved: the preparation of a suitable blank which corrects the effect of the refractive index change on the recorded signal. Two procedures are proposed, one physical (a simple equation to estimate the effect) and the other chemical (removal of the dissolved phosphorus with ferric hydroxide).Support for this work came from CICYT (MAR88-0245 project) and Conselleria de Pesca de la Xunta de GaliciaPeer reviewe

    Elucidating variations in the nucleotide sequence of Ebola virus associated with increasing pathogenicity

    Get PDF
    Background Ebolaviruses cause a severe and often fatal haemorrhagic fever in humans, with some species such as Ebola virus having case fatality rates approaching 90%. Currently, the worst Ebola virus outbreak since the disease was discovered is occurring in West Africa. Although thought to be a zoonotic infection, a concern is that with increasing numbers of humans being infected, Ebola virus variants could be selected which are better adapted for human-to-human transmission. Results To investigate whether genetic changes in Ebola virus become established in response to adaptation in a different host, a guinea pig model of infection was used. In this experimental system, guinea pigs were infected with Ebola virus (EBOV), which initially did not cause disease. To simulate transmission to uninfected individuals, the virus was serially passaged five times in naïve animals. As the virus was passaged, virulence increased and clinical effects were observed in the guinea pig. An RNAseq and consensus mapping approach was then used to evaluate potential nucleotide changes in the Ebola virus genome at each passage. Conclusions Upon passage in the guinea pig model, EBOV become more virulent, RNA editing and also coding changes in key proteins become established. The data suggest that the initial evolutionary trajectory of EBOV in a new host can lead to a gain in virulence. Given the circumstances of the sustained transmission of EBOV in the current outbreak in West Africa, increases in virulence may be associated with prolonged and uncontrolled epidemics of EBOV

    Millifluidic culture improves human midbrain organoid vitality and differentiation

    Get PDF
    Human midbrain-specific organoids (hMOs) serve as an experimental in vitro model for studying the pathogenesis of Parkinson's disease (PD). In hMOs, neuroepithelial stem cells (NESCs) give rise to functional midbrain dopaminergic (mDA) neurons that are selectively degenerating during PD. A limitation of the hMO model is an under-supply of oxygen and nutrients to the densely packed core region, which leads eventually to a "dead core". To reduce this phenomenon, we applied a millifluidic culture system that ensures media supply by continuous laminar flow. We developed a computational model of oxygen transport and consumption in order to predict oxygen levels within the hMOs. The modelling predicts higher oxygen levels in the hMO core region under millifluidic conditions. In agreement with the computational model, a significantly smaller "dead core" was observed in hMOs cultured in a bioreactor system compared to those ones kept under conventional shaking conditions. Comparing the necrotic core regions in the organoids with those obtained from the model allowed an estimation of the critical oxygen concentration necessary for ensuring cell vitality. Besides the reduced "dead core" size, the differentiation efficiency from NESCs to mDA neurons was elevated in hMOs exposed to medium flow. Increased differentiation involved a metabolic maturation process that was further developed in the millifluidic culture. Overall, bioreactor conditions that improve hMO quality are worth considering in the context of advanced PD modelling
    corecore