2,884 research outputs found

    Pretty Little Rainbow : An Indian Love Song

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/2403/thumbnail.jp

    Shock Speed, Cosmic Ray Pressure, and Gas Temperature in the Cygnus Loop

    Full text link
    Upper limits on the shock speeds in supernova remnants can be combined with post-shock temperatures to obtain upper limits on the ratio of cosmic ray to gas pressure (P_CR / P_G) behind the shocks. We constrain shock speeds from proper motions and distance estimates, and we derive temperatures from X-ray spectra. The shock waves are observed as faint H-alpha filaments stretching around the Cygnus Loop supernova remnant in two epochs of the Palomar Observatory Sky Survey (POSS) separated by 39.1 years. We measured proper motions of 18 non-radiative filaments and derived shock velocity limits based on a limit to the Cygnus Loop distance of 576 +/- 61 pc given by Blair et al. for a background star. The PSPC instrument on-board ROSAT observed the X-ray emission of the post-shock gas along the perimeter of the Cygnus Loop, and we measure post-shock electron temperature from spectral fits. Proper motions range from 2.7 arcseconds to 5.4 arcseconds over the POSS epochs and post-shock temperatures range from kT ~ 100-200 eV. Our analysis suggests a cosmic ray to post-shock gas pressure consistent with zero, and in some positions P_CR is formally smaller than zero. We conclude that the distance to the Cygnus Loop is close to the upper limit given by the distance to the background star and that either the electron temperatures are lower than those measured from ROSAT PSPC X-ray spectral fits or an additional heat input for the electrons, possibly due to thermal conduction, is required.Comment: Submitted to ApJ, 7 color figure

    Vegetation forest island edges: A preliminary report

    Get PDF
    As the original native forest has been dissected by roads and replaced by farms or towns, the amount of forest edge relative to the area of forest interior has greatly increased. Today forest edge communities are widespread in many man-modified landscapes. However, the role the edge community plays in the regional landscape, and the extent of and variation in the edge community are relatively undefined. The purpose of this study is to determine the nature of forest edge communities. The specific objectives of the study are to: (1) quantitatively survey and assess the forest edge community; (2) determine how forest edge vegetation differs from that of the forest interior; (3) determine if the directional aspect affects the edge vegetation and (4) present guidelines and suggestions for the management of forest habitat islands, particularly as they relate to the edge community

    Sweet Kentucky Sue

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/5340/thumbnail.jp

    In-flight calibration of the Herschel-SPIRE instrument

    Get PDF
    SPIRE, the Spectral and Photometric Imaging REceiver, is the Herschel Space Observatory's submillimetre camera and spectrometer. It contains a three-band imaging photometer operating at 250, 350 and 500 μm, and an imaging Fourier-transform spectrometer (FTS) covering 194–671 μm (447-1550 GHz). In this paper we describe the initial approach taken to the absolute calibration of the SPIRE instrument using a combination of the emission from the Herschel telescope itself and the modelled continuum emission from solar system objects and other astronomical targets. We present the photometric, spectroscopic and spatial accuracy that is obtainable in data processed through the “standard” pipelines. The overall photometric accuracy at this stage of the mission is estimated as 15% for the photometer and between 15 and 50% for the spectrometer. However, there remain issues with the photometric accuracy of the spectra of low flux sources in the longest wavelength part of the SPIRE spectrometer band. The spectrometer wavelength accuracy is determined to be better than 1/10th of the line FWHM. The astrometric accuracy in SPIRE maps is found to be 2 arcsec when the latest calibration data are used. The photometric calibration of the SPIRE instrument is currently determined by a combination of uncertainties in the model spectra of the astronomical standards and the data processing methods employed for map and spectrum calibration. Improvements in processing techniques and a better understanding of the instrument performance will lead to the final calibration accuracy of SPIRE being determined only by uncertainties in the models of astronomical standards

    Label-free detection of anticancer drug paclitaxel in living cells by confocal Raman microscopy

    Get PDF
    Confocal Raman microscopy, a non-invasive, label-free, and high spatial resolution imaging technique is employed to trace the anticancer drug paclitaxel in living Michigan Cancer Foundation-7 (MCF-7) cells. The Raman images were treated by K-mean cluster analysis to detect the drug in cells. Distribution of paclitaxel in cells is verified by calculating the correlation coefficient between the reference spectrum of the drug and the whole Raman image spectra. A time dependent gradual diffusion of paclitaxel all over the cell is observed suggesting a complementary picture of the pharmaceutical action of this drug based on rapid binding of free tubulin to crystallized paclitaxel. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4794871
    • …
    corecore