61 research outputs found
Immunoblot analysis of the seroreactivity to recombinant Borrelia burgdorferi sensu lato antigens, including VlsE, in the long-term course of treated patients with Erythema migrans
Objective: We evaluated whether immunoblotting is capable of substantiating the posttreatment clinical assessment of patients with erythema migrans ( EM), the hallmark of early Lyme borreliosis. Methods: In 50 patients, seroreactivity to different antigens of Borrelia burgdorferi sensu lato was analyzed by a recombinant immunoblot test (IB) in consecutive serum samples from a minimum follow-up period of 1 year. Antigens in the IgG test were decorin- binding protein A, internal fragment of p41 (p41i), outer surface protein C (OspC), p39, variable major protein-like sequence expressed (VlsE), p58 and p100; those in the IgM test were p41i, OspC and p39. Immune responses were correlated with clinical and treatment-related parameters. Results: Positive IB results were found in 50% before, in 57% directly after therapy and in 44% by the end of the follow-up for the IgG class, and in 36, 43 and 12% for the IgM class. In acute and convalescence phase sera, VlsE was most immunogenic on IgG testing 60 and 70%), and p41i (46 and 57%) and OspC (40 and 57%) for the IgM class. By the end of the follow-up, only the anti-p41i lgM response was significantly decreased to 24%. Conclusions: No correlation was found between IB results and treatment-related parameters. Thus, immunoblotting does not add to the clinical assessment of EM patients after treatment. Copyright (c) 2008 S. Karger AG, Basel
Protection against Staphylococcus aureus colonization and infection by B-and T-cell-mediated mechanisms
© 2018 Zhang et al. Staphylococcus aureus is a major cause of morbidity and mortality worldwide. S. aureus colonizes 20 to 80% of humans at any one time and causes a variety of illnesses. Strains that are resistant to common antibiotics further complicate management. S. aureus vaccine development has been unsuccessful so far, largely due to the incomplete understanding of the mechanisms of protection against this pathogen. Here, we studied the role of different aspects of adaptive immunity induced by an S. aureus vaccine in protection against S. aureus bacteremia, dermonecrosis, skin abscess, and gastrointestinal (GI) colonization. We show that, depending on the challenge model, the contributions of vaccine-induced S. aureus-specific antibody and Th1 and Th17 responses to protection are different: antibodies play a major role in reducing mortality during S. aureus bacteremia, whereas Th1 or Th17 responses are essential for prevention of S. aureus skin abscesses and the clearance of bacteria from the GI tract. Both antibody-and T-cell-mediated mechanisms contribute to prevention of S. aureus dermonecrosis. Engagement of all three immune pathways results in the most robust protection under each pathological condition. Therefore, our results suggest that eliciting multipronged humoral and cellular responses to S. aureus antigens may be critical to achieve effective and comprehensive immune defense against this pathogen. IMPORTANCE S. aureus is a leading cause of healthcare-and community-associated bacterial infections. S. aureus causes various illnesses, including bacteremia, meningitis, endocarditis, pneumonia, osteomyelitis, sepsis, and skin and soft tissue infections. S. aureus colonizes between 20 and 80% of humans; carriers are at increased risk for infection and transmission to others. The spread of multidrug-resistant strains limits antibiotic treatment options. Vaccine development against S. aureus has been unsuccessful to date, likely due to an inadequate understanding about the mechanisms of immune defense against this pathogen. The significance of our work is in illustrating the necessity of generating multipronged B-cell, Th1-, and Th17-mediated responses to S. aureus antigens in conferring enhanced and broad protection against S. aureus invasive infection, skin and soft tissue infection, and mucosal colonization. Our work thus, provides important insights for future vaccine development against this pathogen
Caffeine taste signaling in drosophila larvae
The Drosophila larva has a simple peripheral nervous system with a comparably small number of sensory neurons located externally at the head or internally along the pharynx to assess its chemical environment. It is assumed that larval taste coding occurs mainly via external organs (the dorsal, terminal, and ventral organ). However, the contribution of the internal pharyngeal sensory organs has not been explored. Here we find that larvae require a single pharyngeal gustatory receptor neuron pair called D1, which is located in the dorsal pharyngeal sensilla, in order to avoid caffeine and to associate an odor with caffeine punishment. In contrast, caffeine-driven reduction in feeding in non-choice situations does not require D1. Hence, this work provides data on taste coding via different receptor neurons, depending on the behavioral context. Furthermore, we show that the larval pharyngeal system is involved in bitter tasting. Using ectopic expressions, we show that the caffeine receptor in neuron D1 requires the function of at least four receptor genes: the putative co-receptors Gr33a, Gr66a, the putative caffeine-specific receptor Gr93a, and yet unknown additional molecular component(s). This suggests that larval taste perception is more complex than previously assumed already at the sensory level. Taste information from different sensory organs located outside at the head or inside along the pharynx of the larva is assembled to trigger taste guided behaviors
A critical role for astrocytes in hypercapnic vasodilation in brain
Cerebral blood flow (CBF) is controlled by arterial blood pressure, arterial CO2 arterial O2, and brain activity and is largely constant in the awake state. Although small changes in arterial CO2 are particularly potent to change CBF (1 mmHg variation in arterial CO2 changes CBF by 3-4%), the coupling mechanism is incompletely understood. We tested the hypothesis that astrocytic prostaglandin E2 (PgE2) plays a key role for cerebrovascular Co2) reactivity and that preserved synthesis of glutathione is essential for the full development of this response. We combined two-photon imaging microscopy in brain slices with in vivo work in rats and C57Bl/6J mice to examine the hemodynamic responses to CO2 and somatosensory stimulation before and after inhibition of astrocytic glutathione and PgE2 synthesis. We demonstrate that hypercapnia (increased CO2) evokes an increase in astrocyte [Ca2+]i and stimulates COX-1 activity. The enzyme downstream of COX-1 that synthesizes PgE2 (microsomal prostaglandin E synthase-1) depends critically for its vasodilator activity on the level of glutathione in the brain. We show that when glutathione levels are reduced, astrocyte calcium-evoked releaseof PgE2 is decreased and vasodilation triggered by astrocyte [CA2+]i in vitro and by hypercapnia in vivo is inhibited. Astrocyte synthetic pathways, dependent on glutathione, are involved in cerebrovascular reactivity to CO2. Reductions in glutathione levels in ageing, stroke or schizophrenia could lead to dysfunctional regulation of CBF and subsequent neuronal damage
Influence of the Magnetic State on the Chemical Order-Disorder Transition Temperature in Fe-Ni Permalloy
High sensitivity C-reactive protein distribution in the elderly: the Bambuí Cohort Study, Brazil
Cardiac markers in five different breeds of rabbits (Oryctolagus cuniculus Linnaeus, 1758) used for cardiovascular research
Only vulnerable adults show change in chronic low-grade inflammation after contemplative mental training: evidence from a randomized clinical trial.
Growing evidence suggests that chronic low-grade inflammation can be reduced through mindfulness-based mental training interventions. However, these results are inconsistent and based on patient populations with heterogeneous conditions. Similar research in healthy adults is lacking. Moreover, common intervention protocols involve varying combinations of different contemplative practices, such that it remains unclear which types of training most effectively influence biomarkers of inflammation. The present study investigated the effect of three distinct 3-month training modules cultivating a) interoception and present-moment focus (Presence), b) socio-affective skills (Affect), or c) socio-cognitive skills (Perspective) on the inflammatory biomarkers interleukin-6 (IL-6) and high sensitive C-reactive protein (hs-CRP) in 298 healthy adults. We observed no group-level effect of training on either biomarker, but trend-level interactions of training type and participant sex. In additionally exploring the influence of participants' baseline inflammation, a selective training effect emerged: Following the Presence module, participants with relatively higher inflammatory load showed stronger reduction in IL-6 on average, and in hs-CRP if they were male. Mindfulness- and attention-based mental practice thus appears most effective when targeting chronic low-grade inflammation in healthy adults, particularly in men. Overall, our data point to a floor effect in the reduction of inflammatory markers through contemplative mental training, suggesting that mental training may be less effective in improving basal biological health outcomes in healthy, low-stressed adults than in vulnerable populations
Do electronic health records affect the patient-psychiatrist relationship? A before & after study of psychiatric outpatients
<p>Abstract</p> <p>Background</p> <p>A growing body of literature shows that patients accept the use of computers in clinical care. Nonetheless, studies have shown that computers unequivocally change both verbal and non-verbal communication style and increase patients' concerns about the privacy of their records. We found no studies which evaluated the use of Electronic Health Records (EHRs) specifically on psychiatric patient satisfaction, nor any that took place exclusively in a psychiatric treatment setting. Due to the special reliance on communication for psychiatric diagnosis and evaluation, and the emphasis on confidentiality of psychiatric records, the results of previous studies may not apply equally to psychiatric patients.</p> <p>Method</p> <p>We examined the association between EHR use and changes to the patient-psychiatrist relationship. A patient satisfaction survey was administered to psychiatric patient volunteers prior to and following implementation of an EHR. All subjects were adult outpatients with chronic mental illness.</p> <p>Results</p> <p>Survey responses were grouped into categories of "Overall," "Technical," "Interpersonal," "Communication & Education,," "Time," "Confidentiality," "Anxiety," and "Computer Use." Multiple, unpaired, two-tailed t-tests comparing pre- and post-implementation groups showed no significant differences (at the 0.05 level) to any questionnaire category for all subjects combined or when subjects were stratified by primary diagnosis category.</p> <p>Conclusions</p> <p>While many barriers to the adoption of electronic health records do exist, concerns about disruption to the patient-psychiatrist relationship need not be a prominent focus. Attention to communication style, interpersonal manner, and computer proficiency may help maintain the quality of the patient-psychiatrist relationship following EHR implementation.</p
Orientation specificity of contrast adaptation in mouse primary visual cortex
Contrast adaptation is a commonly studied phenomenon in vision, where prolonged exposure to spatial contrast alters perceived stimulus contrast and produces characteristic shifts in the contrast response functions of primary visual cortex neurons in cats and primates. In this study we investigated contrast adaptation in mouse primary visual cortex with two goals in mind. First, we sought to establish a quantitative description of contrast adaptation in an animal model, where genetic tools are more readily applicable to this phenomenon. Second, the orientation specificity of contrast adaptation was studied to comparatively assess the possible role of local cortical networks in contrast adaptation. In cats and primates, predictable differences in visual processing across the cortical surface are thought to be caused by inhomogeneous local network membership that arises from the pinwheel organization of orientation columns. Because mice lack this pinwheel organization, we predicted that local cortical networks would have access to a broad spectrum of orientation signals, and contrast adaptation in mice would not be specific to the recorded cell's preferred orientation. We found that most mouse V1 neurons showed contrast adaptation that was robust regardless of whether the adapting stimulus matched the cell's preferred orientation or was orthogonal to it. </jats:p
- …
