504 research outputs found
Protocol for PIT: a phase III trial of prophylactic irradiation of tracts in patients with malignant pleural mesothelioma following invasive chest wall intervention.
INTRODUCTION: Histological diagnosis of malignant mesothelioma requires an invasive procedure such as CT-guided needle biopsy, thoracoscopy, video-assisted thorascopic surgery (VATs) or thoracotomy. These invasive procedures encourage tumour cell seeding at the intervention site and patients can develop tumour nodules within the chest wall. In an effort to prevent nodules developing, it has been widespread practice across Europe to irradiate intervention sites postprocedure--a practice known as prophylactic irradiation of tracts (PIT). To date there has not been a suitably powered randomised trial to determine whether PIT is effective at reducing the risk of chest wall nodule development. METHODS AND ANALYSIS: In this multicentre phase III randomised controlled superiority trial, 374 patients who can receive radiotherapy within 42 days of a chest wall intervention will be randomised to receive PIT or no PIT. Patients will be randomised on a 1:1 basis. Radiotherapy in the PIT arm will be 21 Gy in three fractions. Subsequent chemotherapy is given at the clinicians' discretion. A reduction in the incidence of chest wall nodules from 15% to 5% in favour of radiotherapy 6 months after randomisation would be clinically significant. All patients will be followed up for up to 2 years with monthly telephone contact and at least four outpatient visits in the first year. ETHICS AND DISSEMINATION: PIT was approved by NRES Committee North West-Greater Manchester West (REC reference 12/NW/0249) and recruitment is currently on-going, the last patient is expected to be randomised by the end of 2015. The analysis of the primary end point, incidence of chest wall nodules 6 months after randomisation, is expected to be published in 2016 in a peer reviewed journal and results will also be presented at scientific meetings and summary results published online. A follow-up analysis is expected to be published in 2018. TRIAL REGISTRATION NUMBER: ISRCTN04240319; NCT01604005; Pre-results
Voltage-gated potassium channels (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database
The 6TM family of K channels comprises the voltage-gated KV subfamilies, the EAG subfamily (which includes hERG channels), the Ca2+-activated Slo subfamily (actually with 7TM, termed BK) and the Ca2+-activated SK subfamily. These channels possess a pore-forming α subunit that comprise tetramers of identical subunits (homomeric) or of different subunits (heteromeric). Heteromeric channels can only be formed within subfamilies (e.g. Kv1.1 with Kv1.2; Kv7.2 with Kv7.3). The pharmacology largely reflects the subunit composition of the functional channel
Voltage-gated potassium channels (Kv) in GtoPdb v.2021.3
The 6TM family of K channels comprises the voltage-gated KV subfamilies, the EAG subfamily (which includes hERG channels), the Ca2+-activated Slo subfamily (actually with 7TM, termed BK) and the Ca2+-activated SK subfamily. These channels possess a pore-forming α subunit that comprise tetramers of identical subunits (homomeric) or of different subunits (heteromeric). Heteromeric channels can only be formed within subfamilies (e.g. Kv1.1 with Kv1.2; Kv7.2 with Kv7.3). The pharmacology largely reflects the subunit composition of the functional channel
A Human TREK-1/HEK Cell Line: A Highly Efficient Screening Tool for Drug Development in Neurological Diseases
TREK-1 potassium channels are involved in a number of physiopathological processes such as neuroprotection, pain and depression. Molecules able to open or to block these channels can be clinically important. Having a cell model for screening such molecules is of particular interest. Here, we describe the development of the first available cell line that constituvely expresses the TREK-1 channel. The TREK-1 channel expressed by the h-TREK-1/HEK cell line has conserved all its modulation properties. It is opened by stretch, pH, polyunsaturated fatty acids and by the neuroprotective molecule, riluzole and it is blocked by spadin or fluoxetine. We also demonstrate that the h-TREK-1/HEK cell line is protected against ischemia by using the oxygen-glucose deprivation model
Bronchogenic cyst associated with pericardial defect: Case report and review of the literature
Partial defect of the pericardium combined with bronchogenic cyst is a very rare congenital anomaly. We describe the case of a 32-year-old man with a partial defect of the left pericardium and a bronchogenic cyst arising from the border of the pericardial defect. The cyst was successfully resected with the harmonic scalpel by three-port videothoracoscopic approach
On the Role of the Difference in Surface Tensions Involved in the Allosteric Regulation of NHE-1 Induced by Low to Mild Osmotic Pressure, Membrane Tension and Lipid Asymmetry
The sodium-proton exchanger 1 (NHE-1) is a membrane transporter that exchanges Na+ for H+ ion across the membrane of eukaryotic cells. It is cooperatively activated by intracellular protons, and this allosteric regulation is modulated by the biophysical properties of the plasma membrane and related lipid environment. Consequently, NHE-1 is a mechanosensitive transporter that responds to osmotic pressure, and changes in membrane composition. The purpose of this study was to develop the relationship between membrane surface tension, and the allosteric balance of a mechanosensitive transporter such as NHE-1. In eukaryotes, the asymmetric composition of membrane leaflets results in a difference in surface tensions that is involved in the creation of a reservoir of intracellular vesicles and membrane buds contributing to buffer mechanical constraints. Therefore, we took this phenomenon into account in this study and developed a set of relations between the mean surface tension, membrane asymmetry, fluid phase endocytosis and the allosteric equilibrium constant of the transporter. We then used the experimental data published on the effects of osmotic pressure and membrane modification on the NHE-1 allosteric constant to fit these equations. We show here that NHE-1 mechanosensitivity is more based on its high sensitivity towards the asymmetry between the bilayer leaflets compared to mean global membrane tension. This compliance to membrane asymmetry is physiologically relevant as with their slower transport rates than ion channels, transporters cannot respond as high pressure-high conductance fast-gating emergency valves
A Novel Extracytoplasmic Function (ECF) Sigma Factor Regulates Virulence in Pseudomonas aeruginosa
Next to the two-component and quorum sensing systems, cell-surface signaling (CSS) has been recently identified as an important regulatory system in Pseudomonas aeruginosa. CSS systems sense signals from outside the cell and transmit them into the cytoplasm. They generally consist of a TonB-dependent outer membrane receptor, a sigma factor regulator (or anti-sigma factor) in the cytoplasmic membrane, and an extracytoplasmic function (ECF) sigma factor. Upon perception of the extracellular signal by the receptor the ECF sigma factor is activated and promotes the transcription of a specific set of gene(s). Although most P. aeruginosa CSS systems are involved in the regulation of iron uptake, we have identified a novel system involved in the regulation of virulence. This CSS system, which has been designated PUMA3, has a number of unusual characteristics. The most obvious difference is the receptor component which is considerably smaller than that of other CSS outer membrane receptors and lacks a β-barrel domain. Homology modeling of PA0674 shows that this receptor is predicted to be a bilobal protein, with an N-terminal domain that resembles the N-terminal periplasmic signaling domain of CSS receptors, and a C-terminal domain that resembles the periplasmic C-terminal domains of the TolA/TonB proteins. Furthermore, the sigma factor regulator both inhibits the function of the ECF sigma factor and is required for its activity. By microarray analysis we show that PUMA3 regulates the expression of a number of genes encoding potential virulence factors, including a two-partner secretion (TPS) system. Using zebrafish (Danio rerio) embryos as a host we have demonstrated that the P. aeruginosa PUMA3-induced strain is more virulent than the wild-type. PUMA3 represents the first CSS system dedicated to the transcriptional activation of virulence functions in a human pathogen
The IASLC/ITMIG thymic epithelial tumors staging project: Proposals for the T component for the forthcoming (8th) edition of the TNM classification of malignant tumors
Despite longstanding recognition of thymic epithelial neoplasms, there is no official American Joint Committee on Cancer/ Union for International Cancer Control stage classification. This article summarizes proposals for classification of the T component of stage classification for use in the 8th edition of the tumor, node, metastasis classification for malignant tumors. This represents the output of the International Association for the Study of Lung Cancer and the International Thymic Malignancies Interest Group Staging and Prognostics Factor Committee, which assembled and analyzed a worldwide database of 10,808 patients with thymic malignancies from 105 sites. The committee proposes division of the T component into four categories, representing levels of invasion. T1 includes tumors localized to the thymus and anterior mediastinal fat, regardless of capsular invasion, up to and including infiltration through the mediastinal pleura. Invasion of the pericardium is designated as T2. T3 includes tumors with direct involvement of a group of mediastinal structures either singly or in combination: lung, brachiocephalic vein, superior vena cava, chest wall, and phrenic nerve. Invasion of more central structures constitutes T4: aorta and arch vessels, intrapericardial pulmonary artery, myocardium, trachea, and esophagus. Size did not emerge as a useful descriptor for stage classification. This classification of T categories, combined with a classification of N and M categories, provides a basis for a robust tumor, node, metastasis classification system for the 8th edition of American Joint Committee on Cancer/Union for International Cancer Control stage classification
Adenosine A1 receptor: Functional receptor-receptor interactions in the brain
Over the past decade, many lines of investigation have shown that receptor-mediated signaling exhibits greater diversity than previously appreciated. Signal diversity arises from numerous factors, which include the formation of receptor dimers and interplay between different receptors. Using adenosine A1 receptors as a paradigm of G protein-coupled receptors, this review focuses on how receptor-receptor interactions may contribute to regulation of the synaptic transmission within the central nervous system. The interactions with metabotropic dopamine, adenosine A2A, A3, neuropeptide Y, and purinergic P2Y1 receptors will be described in the first part. The second part deals with interactions between A1Rs and ionotropic receptors, especially GABAA, NMDA, and P2X receptors as well as ATP-sensitive K+ channels. Finally, the review will discuss new approaches towards treating neurological disorders
Synthetic Mimic of Antimicrobial Peptide with Nonmembrane-Disrupting Antibacterial Properties
Proteolysis in dairy lactic acid bacteria has been studied in great detail by genetic, biochemical and ultrastructural methods. From these studies the picture emerges that the proteolytic systems of lactococci and lactobacilli are remarkably similar in their components and mode of action. The proteolytic system consists of an extracellularly located serine-proteinase, transport systems specific for di-tripeptides and oligopeptides (> 3 residues), and a multitude of intracellular peptidases. This review describes the properties and regulation of individual components as well as studies that have led to identification of their cellular localization. Targeted mutational techniques developed in recent years have made it possible to investigate the role of individual and combinations of enzymes in vivo. Based on these results as well as in vitro studies of the enzymes and transporters, a model for the proteolytic pathway is proposed. The main features are: (i) proteinases have a broad specificity and are capable of releasing a large number of different oligopeptides, of which a large fraction falls in the range of 4 to 8 amino acid residues; (ii) oligopeptide transport is the main route for nitrogen entry into the cell; (iii) all peptidases are located intracellularly and concerted action of peptidases is required for complete degradation of accumulated peptides.
- …