49 research outputs found

    Food mechanical properties and isotopic signatures in forest versus savannah dwelling eastern chimpanzees

    Get PDF
    Chimpanzees are traditionally described as ripe fruit specialists with large incisors but relatively small postcanine teeth, adhering to a somewhat narrow dietary niche. Field observations and isotopic analyses suggest that environmental conditions greatly affect habitat resource utilization by chimpanzee populations. Here we combine measures of dietary mechanics with stable isotope signatures from eastern chimpanzees living in tropical forest (Ngogo, Uganda) and savannah woodland (Issa Valley, Tanzania). We show that foods at Issa can present a considerable mechanical challenge, most saliently in the external tissues of savannah woodland plants compared to their tropical forest equivalents. This pattern is concurrent with different isotopic signatures between sites. These findings demonstrate that chimpanzee foods in some habitats are mechanically more demanding than previously thought, elucidating the broader evolutionary constraints acting on chimpanzee dental morphology. Similarly, these data can help clarify the dietary mechanical landscape of extinct hominins often overlooked by broad C3/C4 isotopic categories

    The Importance of Craniofacial Sutures in Biomechanical Finite Element Models of the Domestic Pig

    Get PDF
    Craniofacial sutures are a ubiquitous feature of the vertebrate skull. Previous experimental work has shown that bone strain magnitudes and orientations often vary when moving from one bone to another, across a craniofacial suture. This has led to the hypothesis that craniofacial sutures act to modify the strain environment of the skull, possibly as a mode of dissipating high stresses generated during feeding or impact. This study tests the hypothesis that the introduction of craniofacial sutures into finite element (FE) models of a modern domestic pig skull would improve model accuracy compared to a model without sutures. This allowed the mechanical effects of sutures to be assessed in isolation from other confounding variables. These models were also validated against strain gauge data collected from the same specimen ex vivo. The experimental strain data showed notable strain differences between adjacent bones, but this effect was generally not observed in either model. It was found that the inclusion of sutures in finite element models affected strain magnitudes, ratios, orientations and contour patterns, yet contrary to expectations, this did not improve the fit of the model to the experimental data, but resulted in a model that was less accurate. It is demonstrated that the presence or absence of sutures alone is not responsible for the inaccuracies in model strain, and is suggested that variations in local bone material properties, which were not accounted for by the FE models, could instead be responsible for the pattern of results

    The Evolution of Bat Vestibular Systems in the Face of Potential Antagonistic Selection Pressures for Flight and Echolocation

    Get PDF
    PMCID: PMC3634842This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Reacquisition of the lower temporal bar in sexually dimorphic fossil lizards provides a rare case of convergent evolution

    Get PDF
    Temporal fenestration has long been considered a key character to understand relationships amongst reptiles. In particular, the absence of the lower temporal bar (LTB) is considered one of the defining features of squamates (lizards and snakes). In a re-assessment of the borioteiioid lizard Polyglyphanodon sternbergi (Cretaceous, North America), we detected a heretofore unrecognized ontogenetic series, sexual dimorphism (a rare instance for Mesozoic reptiles), and a complete LTB, a feature only recently recognized for another borioteiioid, Tianyusaurus zhengi (Cretaceous, China). A new phylogenetic analysis (with updates on a quarter of the scorings for P. sternbergi) indicates not only that the LTB was reacquired in squamates, but it happened independently at least twice. An analysis of the functional significance of the LTB using proxies indicates that, unlike for T. zhengi, this structure had no apparent functional advantage in P. sternbergi, and it is better explained as the result of structural constraint release. The observed canalization against a LTB in squamates was broken at some point in the evolution of borioteiioids, whereas never re-occuring in other squamate lineages. This case of convergent evolution involves a mix of both adaptationist and structuralist causes, which is unusual for both living and extinct vertebrates

    A Cervid Vocal Fold Model Suggests Greater Glottal Efficiency in Calling at High Frequencies

    Get PDF
    Male Rocky Mountain elk (Cervus elaphus nelsoni) produce loud and high fundamental frequency bugles during the mating season, in contrast to the male European Red Deer (Cervus elaphus scoticus) who produces loud and low fundamental frequency roaring calls. A critical step in understanding vocal communication is to relate sound complexity to anatomy and physiology in a causal manner. Experimentation at the sound source, often difficult in vivo in mammals, is simulated here by a finite element model of the larynx and a wave propagation model of the vocal tract, both based on the morphology and biomechanics of the elk. The model can produce a wide range of fundamental frequencies. Low fundamental frequencies require low vocal fold strain, but large lung pressure and large glottal flow if sound intensity level is to exceed 70 dB at 10 m distance. A high-frequency bugle requires both large muscular effort (to strain the vocal ligament) and high lung pressure (to overcome phonation threshold pressure), but at least 10 dB more intensity level can be achieved. Glottal efficiency, the ration of radiated sound power to aerodynamic power at the glottis, is higher in elk, suggesting an advantage of high-pitched signaling. This advantage is based on two aspects; first, the lower airflow required for aerodynamic power and, second, an acoustic radiation advantage at higher frequencies. Both signal types are used by the respective males during the mating season and probably serve as honest signals. The two signal types relate differently to physical qualities of the sender. The low-frequency sound (Red Deer call) relates to overall body size via a strong relationship between acoustic parameters and the size of vocal organs and body size. The high-frequency bugle may signal muscular strength and endurance, via a ‘vocalizing at the edge’ mechanism, for which efficiency is critical

    Human Remains from the Pleistocene-Holocene Transition of Southwest China Suggest a Complex Evolutionary History for East Asians

    Get PDF
    BACKGROUND: Later Pleistocene human evolution in East Asia remains poorly understood owing to a scarcity of well described, reliably classified and accurately dated fossils. Southwest China has been identified from genetic research as a hotspot of human diversity, containing ancient mtDNA and Y-DNA lineages, and has yielded a number of human remains thought to derive from Pleistocene deposits. We have prepared, reconstructed, described and dated a new partial skull from a consolidated sediment block collected in 1979 from the site of Longlin Cave (Guangxi Province). We also undertook new excavations at Maludong (Yunnan Province) to clarify the stratigraphy and dating of a large sample of mostly undescribed human remains from the site. METHODOLOGY/PRINCIPAL FINDINGS: We undertook a detailed comparison of cranial, including a virtual endocast for the Maludong calotte, mandibular and dental remains from these two localities. Both samples probably derive from the same population, exhibiting an unusual mixture of modern human traits, characters probably plesiomorphic for later Homo, and some unusual features. We dated charcoal with AMS radiocarbon dating and speleothem with the Uranium-series technique and the results show both samples to be from the Pleistocene-Holocene transition: ∼14.3-11.5 ka. CONCLUSIONS/SIGNIFICANCE: Our analysis suggests two plausible explanations for the morphology sampled at Longlin Cave and Maludong. First, it may represent a late-surviving archaic population, perhaps paralleling the situation seen in North Africa as indicated by remains from Dar-es-Soltane and Temara, and maybe also in southern China at Zhirendong. Alternatively, East Asia may have been colonised during multiple waves during the Pleistocene, with the Longlin-Maludong morphology possibly reflecting deep population substructure in Africa prior to modern humans dispersing into Eurasia

    Distinct mandibular premolar crown morphology in Homo naledi and its implications for the evolution of Homo species in southern Africa

    Get PDF
    Homo naledi displays a combination of features across the skeleton not found in any other hominin taxon, which has hindered attempts to determine its placement within the hominin clade. Using geometric morphometrics, we assess the morphology of the mandibular premolars of the species at the enamel-dentine junction (EDJ). Comparing with specimens of Paranthropus, Australopithecus and Homo (n = 95), we find that the H. naledi premolars from the Dinaledi chamber consistently display a suite of traits (e.g., tall crown, well22 developed P3 and P4 metaconid, strongly developed P3 mesial marginal ridge, and a P3>P4 size relationship) that distinguish them from known hominin groups. Premolars from a second locality, the Lesedi Chamber, are consistent with this morphology. We also find that two specimens from South Africa, SK 96 (usually attributed to Paranthropus) and Stw 80 (Homo sp.), show similarities to the species, and we discuss a potential evolutionary link between H. naledi and hominins from Sterkfontein and Swartkrans
    corecore