407 research outputs found
Spike-Train Responses of a Pair of Hodgkin-Huxley Neurons with Time-Delayed Couplings
Model calculations have been performed on the spike-train response of a pair
of Hodgkin-Huxley (HH) neurons coupled by recurrent excitatory-excitatory
couplings with time delay. The coupled, excitable HH neurons are assumed to
receive the two kinds of spike-train inputs: the transient input consisting of
impulses for the finite duration (: integer) and the sequential input
with the constant interspike interval (ISI). The distribution of the output ISI
shows a rich of variety depending on the coupling strength and the
time delay. The comparison is made between the dependence of the output ISI for
the transient inputs and that for the sequential inputs.Comment: 19 pages, 4 figure
An associative memory of Hodgkin-Huxley neuron networks with Willshaw-type synaptic couplings
An associative memory has been discussed of neural networks consisting of
spiking N (=100) Hodgkin-Huxley (HH) neurons with time-delayed couplings, which
memorize P patterns in their synaptic weights. In addition to excitatory
synapses whose strengths are modified after the Willshaw-type learning rule
with the 0/1 code for quiescent/active states, the network includes uniform
inhibitory synapses which are introduced to reduce cross-talk noises. Our
simulations of the HH neuron network for the noise-free state have shown to
yield a fairly good performance with the storage capacity of for the low neuron activity of . This
storage capacity of our temporal-code network is comparable to that of the
rate-code model with the Willshaw-type synapses. Our HH neuron network is
realized not to be vulnerable to the distribution of time delays in couplings.
The variability of interspace interval (ISI) of output spike trains in the
process of retrieving stored patterns is also discussed.Comment: 15 pages, 3 figures, changed Titl
Stochastic Resonance of Ensemble Neurons for Transient Spike Trains: A Wavelet Analysis
By using the wavelet transformation (WT), we have analyzed the response of an
ensemble of (=1, 10, 100 and 500) Hodgkin-Huxley (HH) neurons to {\it
transient} -pulse spike trains () with independent Gaussian noises.
The cross-correlation between the input and output signals is expressed in
terms of the WT expansion coefficients. The signal-to-noise ratio (SNR) is
evaluated by using the {\it denoising} method within the WT, by which the noise
contribution is extracted from output signals. Although the response of a
single (N=1) neuron to sub-threshold transient signals with noises is quite
unreliable, the transmission fidelity assessed by the cross-correlation and SNR
is shown to be much improved by increasing the value of : a population of
neurons play an indispensable role in the stochastic resonance (SR) for
transient spike inputs. It is also shown that in a large-scale ensemble, the
transmission fidelity for supra-threshold transient spikes is not significantly
degraded by a weak noise which is responsible to SR for sub-threshold inputs.Comment: 20 pages, 4 figure
A Novel Therapeutic and Prophylactic Vaccine (HVJ-Envelope / Hsp65 DNA + IL-12 DNA) against Tuberculosis Using the Cynomolgus Monkey Model
AbstractWe have developed a novel tuberculosis (TB) vaccine; a combination of the DNA vaccines expressing mycobacterial heat shock protein 65 (HSP65) and interleukin 12 (IL-12) delivered by the hemagglutinating virus of Japan (HVJ)-envelope and –liposome (HSP65 + IL-12/HVJ). An IL-12 expression vector (IL-12DNA) encoding single-chain IL-12 proteins comprised of p40 and p35 subunits were constructed. This vaccine provided remarkable protective efficacy in mouse and guinea pig models compared to the BCG vaccine on the basis of C.F.U of number of TB, survival, an induction of the CD8 positive CTL activity and improvement of the histopathological tuberculosis lesions. This vaccine also provided therapeutic efficacy against multi-drug resistant TB (MDR-TB) and extremely drug resistant TB (XDR-TB) (prolongation of survival time and the decrease in the number of TB in the lung) in murine models. Furthermore, we extended our studies to a cynomolgus monkey model, which is currently the best animal model of human tuberculosis. This novel vaccine provided a higher level of the protective efficacy than BCG based upon the assessment of mortality, the ESR, body weight, chest X-ray findings and immune responses. All monkeys in the control group (saline) died within 8 months, while 50% of monkeys in the HSP65+hIL-12/HVJ group survived more than 14 months post-infection (the termination period of the experiment). Furthermore, the BCG priming and HSP65 + IL-12/HVJ vaccine (booster) by the priming-booster method showed a synergistic effect in the TB-infected cynomolgus monkey (100% survival). In contrast, 33% of monkeys from BCG Tokyo alone group were alive (33% survival). Furthermore, this vaccine exerted therapeutic efficacy (100% survival) and augmentation of immune responses in the TB-infected monkeys. These data indicate that our novel DNA vaccine might be useful against Mycobacterium tuberculosis including XDR-TB and MDR-TB for human therapeutic clinical trials
Binding of lac repressor-GFP fusion protein to lac operator sites inserted in the tobacco chloroplast genome examined by chromatin immunoprecipitation
Chromatin immunoprecipitation (ChIP) has been used to detect binding of DNA-binding proteins to sites in nuclear and mitochondrial genomes. Here, we describe a method for detecting protein-binding sites on chloroplast DNA, using modifications to the nuclear ChIP procedures. The method was developed using the lac operator (lacO)/lac repressor (LacI) system from Escherichia coli. The lacO sequences were integrated into a single site between the rbcL and accD genes in tobacco plastid DNA and homoplasmic transplastomic plants were crossed with transgenic tobacco plants expressing a nuclear-encoded plastid-targeted GFP-LacI fusion protein. In the progeny, the GFP-LacI fusion protein could be visualized in living tissues using confocal microscopy, and was found to co-localize with plastid nucleoids. Isolated chloroplasts from the lacO/GFP-LacI plants were lysed, treated with micrococcal nuclease to digest the DNA to fragments of ∼600 bp and incubated with antibodies to GFP and protein A-Sepharose. PCR analysis on DNA extracted from the immunoprecipitate demonstrated IPTG (isopropylthiogalactoside)-sensitive binding of GFP-LacI to lacO. Binding of GFP-LacI to endogenous sites in plastid DNA showing sequence similarity to lacO was also detected, but required reversible cross-linking with formaldehyde. This may provide a general method for the detection of binding sites on plastid DNA for specific proteins
Spectral modeling of scintillator for the NEMO-3 and SuperNEMO detectors
We have constructed a GEANT4-based detailed software model of photon
transport in plastic scintillator blocks and have used it to study the NEMO-3
and SuperNEMO calorimeters employed in experiments designed to search for
neutrinoless double beta decay. We compare our simulations to measurements
using conversion electrons from a calibration source of and show
that the agreement is improved if wavelength-dependent properties of the
calorimeter are taken into account. In this article, we briefly describe our
modeling approach and results of our studies.Comment: 16 pages, 10 figure
Development of New Ensemble Methods Based on the Performance Skills of Regional Climate Models over South Korea
In this paper, the prediction skills of five ensemble methods for temperature and precipitation are discussed by considering 20 yr of simulation results (from 1989 to 2008) for four regional climate models (RCMs) driven by NCEP-Department of Energy and ECMWF Interim Re-Analysis (ERA-Interim) boundary conditions. The simulation domain is the Coordinated Regional Downscaling Experiment (CORDEX) for East Asia. and the number of grid points is 197 x 233 with a 50-km horizontal resolution. Three new performance-based ensemble averaging (PEA) methods are developed in this study using 1) bias, root-mean-square errors (RMSEs) and absolute correlation (PEA_BRC). RMSE and absolute correlation (PEA RAC), and RMSE and original correlation (PEA_ROC). The other two ensemble methods are equal-weighted averaging (EWA) and multivariate linear regression (Mul_Reg). To derive the weighting coefficients and cross validate the prediction skills of the five ensemble methods. the authors considered 15-yr and 5-yr data, respectively, from the 20-yr simulation data. Among the five ensemble methods, the Mul_Reg (EWA) method shows the best (worst) skill during the training period. The PEA_RAC and PEA_ROC methods show skills that are similar to those of Mul_Reg during the training period. However, the skills and stabilities of Mul_Reg were drastically reduced when this method was applied to the prediction period. But, the skills and stabilities of PEA_RAC were only slightly reduced in this case. As a result. PEA RAC shows the best skill, irrespective of the seasons and variables, during the prediction period. This result confirms that the new ensemble method developed in this study. PEA_RAC. can be used for the prediction of regional climate.open7
Expression of multidrug resistance markers ABCB1 (MDR-1/P-gp) and ABCC1 (MRP-1) in renal cell carcinoma
Background: Renal cancer patients respond poorly to conventional chemotherapy, this unresponsiveness may be attributable to multidrug resistance (MDR). The mechanisms of MDR in renal cancer are not fully understood and the specific contribution of ABC transporter proteins which have been implicated in the chemoresistance of various cancers has not been fully defined in this disease. Methods: The aim of this prospective study was to analyse by immunohistochemistry the expression of two of these transporter efflux pumps, namely MDR-1/P-gp (ABCB1) and MRP-1 (ABCC1) in archival material from 113 renal carcinoma patients. Results: In the largest study of its kind, results presented here show 100% of cases stained positively for P-gp and MRP-1 protein expression. Conclusion: However, although these findings do not prove a causal role, the high frequency of tumours expressing these efflux pumps suggests that they may be important contributors to the chemoresistance of this tumour type
PAAR-repeat proteins sharpen and diversify the Type VI secretion system spike
The bacterial type VI secretion system (T6SS) is a large multi-component, dynamic macromolecular machine that plays an important role in the ecology of many Gram negative bacteria. T6SS is responsible for translocation of a wide range of toxic effector molecules allowing predatory cells to kill both prokaryotic as well as eukaryotic prey cells1-5. The T6SS organelle is functionally analogous to contractile tails of bacteriophages and is thought to attack cells by initially penetrating them with a trimeric protein complex called the VgrG spike6,7. Neither the exact protein composition of the T6SS organelle nor the mechanisms of effector selection and delivery are known. Here we report that proteins from the PAAR (Proline-Alanine-Alanine-aRginine) repeat superfamily form a sharp conical extension on the VgrG spike, which is further involved in attaching effector domains to the spike. The crystal structures of two PAAR-repeat proteins bound to VgrG-like partners show that these proteins function to sharpen the tip of the VgrG spike. We demonstrate that PAAR proteins are essential for T6SS- mediated secretion and target cell killing by Vibrio cholerae and Acinetobacter baylyi. Our results suggest a new model of the T6SS organelle in which the VgrG-PAAR spike complex is decorated with multiple effectors that are delivered simultaneously into target cells in a single contraction-driven translocation event
- …