227 research outputs found
Quasiperiodic oscillations in a strong gravitational field around neutron stars testing braneworld models
The strong gravitational field of neutron stars in the brany universe could
be described by spherically symmetric solutions with a metric in the exterior
to the brany stars being of the Reissner-Nordstrom type containing a brany
tidal charge representing the tidal effect of the bulk spacetime onto the star
structure. We investigate the role of the tidal charge in orbital models of
high-frequency quasiperiodic oscillations (QPOs) observed in neutron star
binary systems. We focus on the relativistic precession model. We give the
radial profiles of frequencies of the Keplerian (vertical) and radial epicyclic
oscillations. We show how the standard relativistic precession model modified
by the tidal charge fits the observational data, giving estimates of the
allowed values of the tidal charge and the brane tension based on the processes
going in the vicinity of neutron stars. We compare the strong field regime
restrictions with those given in the weak-field limit of solar system
experiments.Comment: 26 pages, 6 figure
Anomalous Magnetoresistance by Breaking Ice Rule in Bi2Ir2O7/Dy2Ti2O7 Heterostructure
While geometrically frustrated quantum magnets are known for a variety of
exotic spin states that are of great interests of understanding emergent
phenomena as well as enabling revolutionary quantum technologies, most of them
are necessarily good insulators which are difficult to be integrated with
modern electrical circuit that relies on moving charge carriers. The grand
challenge of converting fluctuations and excitations of frustrated moments into
electronic responses is finding ways to introduce charge carriers that interact
with the localized spins without destroying the spin states. Here, we show
that, by designing a Bi2Ir2O7/Dy2Ti2O7 heterostructure, the breaking of the
spin ice rule in insulating Dy2Ti2O7 can lead to a charge response in the
Bi2Ir2O7 conducting layer that can be detected as anomalous magnetoresistance.
These results demonstrate a novel and feasible interfacial approach for
electronically probing exotic spin states in insulating magnets, laying out a
blueprint for the metallization of frustrated quantum magnets
Insights into the relationships of Palearctic and Nearctic lymnaeids (Mollusca : Gastropoda) by rDNA ITS-2 sequencing and phylogeny of stagnicoline intermediate host species of Fasciola hepatica
Fascioliasis by Fasciola hepatica is the vector-borne disease presenting the widest latitudinal, longitudinal and altitudinal distribution known. F. hepatica shows a great adaptation power to new environmental conditions which is the consequence of its own capacities together with the adaptation and colonization abilities of its specific vector hosts, freshwater snails of the family Lymnaeidae. Several lymnaeid species only considered as secondary contributors to the liver fluke transmission have, however, played a very important role in the geographic expansion of this disease. Many of them belong to the so-called "stagnicoline" type group. Stagnicolines have, therefore, a very important applied interest in the Holarctic region, to which they are geographically restricted. The present knowledge on the genetics of stagnicolines and on their parasite-host interrelationships is, however, far from being sufficient. The present paper analyses the relationships between Palaearctic and Nearctic stagnicoline species on the base of the new light furnished by the results obtained in nuclear rDNA ITS-2 sequencing and corresponding phylogenetic studies of the lymnaeid taxa Lymnaea (Stagnicola) occulta, L. (S.) palustris palustris (topotype specimens) and L. (S.) p. turricula from Europe. Natural infections with F. hepatica have been reported in all of them. Surprisingly, ITS-2 length and GC content of L. occulta were similar and perfectly fitted within the respective ranges known in North American stagnicolines. Nucleotide differences and genetic distances were higher between L. occulta and the other European stagnicolines than between L. occulta and the North American ones. The ITS-2 sequence of L. p. turricula from Poland differed from the other genotypes known from turricula in Europe. The phylogenetic trees using the maximum-parsimony, distance and maximum-likelihood methods confirmed (i) the inclusion of L. occulta in the branch of North American stagnicolines, (ii) the link between the North American stagnicolines-L. occulta group with Galba truncatula, and (iii) the location of the L. p. turricula genotype from Poland closer to L. p. palustris than to other European L. p. turricula genotypes. The Palaearctic species occulta is included in the genus Catascopia, together with the Nearctic species catascopium, emarginata and elodes. The results suggest a potential of transmission capacity for C. occulta higher than that of other European stagnicolines or Omphiscola glabra. The relatively low genetic distances between C. occulta and G. truncatula and the clustering of both species in the same clade suggest that C. occulta may be potentially considered as the second lymnaeid intermediate host species of F. hepatica in importance in eastern and northern Europe, and probably also western and central Asia, after G. truncatula. L. p. turricula may be considered as a potential secondary vector of F. hepatica, at a level similar to that of L. p. palustris.(VLID)221360
Soil characterization and drainage effects in a savanna palm swamp (vereda) of an agricultural area from Central Brazil.
Brazilian palm swamps (veredas) are fundamentals in the hydrological balance of watercourses in the Brazilian savanna (Cerrado). The "sponge effect" of their soils is the main factor controlling local hydrology, storing rainwater, and functioning as headwaters. The restricted knowledge of these tropical ecosystems has led to increased losses, poor preservation, and reduction in their ecosystem services. Veredas have become refuges surrounded by croplands, often drained and inappropriately managed. This study shows the impacts of anthropization on soil processes and properties of a vereda in an agricultural area. Two soil profiles were selected and characterized as preserved and anthropized, respectively upstream and downstream of the studied vereda. Morphological, physical, chemical and microbiological properties were analyzed. Principal Components Analysis (PCA) was applied to synthesize the data and provide evidence of the main properties and underlying processes that most responded to the degradation action. The arrangement of this analysis shows three main distinguish drivers: one joining the properties related to the humification of organic matter and relative accumulation of mineral matter versus accumulation of organic matter; the second with properties related to soil chemical reactivity; and the third reflecting the mineralization of organic matter. Our results suggest that the anthropic action has strongly caused the organic carbon reduction (~22 %). After 20 years, the anthropized soil presents not only a great decline in carbon stock (~14 kg m-2), but also strong impacts on several other ecologic functions, such as water holding capacity. Veredas are complex and fragile environments, and they should be fully protected to maintain their ecosystem services
Foundations of Black Hole Accretion Disk Theory
This review covers the main aspects of black hole accretion disk theory. We
begin with the view that one of the main goals of the theory is to better
understand the nature of black holes themselves. In this light we discuss how
accretion disks might reveal some of the unique signatures of strong gravity:
the event horizon, the innermost stable circular orbit, and the ergosphere. We
then review, from a first-principles perspective, the physical processes at
play in accretion disks. This leads us to the four primary accretion disk
models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin)
disks, slim disks, and advection-dominated accretion flows (ADAFs). After
presenting the models we discuss issues of stability, oscillations, and jets.
Following our review of the analytic work, we take a parallel approach in
reviewing numerical studies of black hole accretion disks. We finish with a few
select applications that highlight particular astrophysical applications:
measurements of black hole mass and spin, black hole vs. neutron star accretion
disks, black hole accretion disk spectral states, and quasi-periodic
oscillations (QPOs).Comment: 91 pages, 23 figures, final published version available at
http://www.livingreviews.org/lrr-2013-
Phosphorylation Alters the Interaction of the Arabidopsis Phosphotransfer Protein AHP1 with Its Sensor Kinase ETR1
The ethylene receptor ethylene response 1 (ETR1) and the Arabidopsis histidine-containing phosphotransfer protein 1 (AHP1) form a tight complex in vitro. According to our current model ETR1 and AHP1 together with a response regulator form a phosphorelay system controlling the gene expression response to the plant hormone ethylene, similar to the two-component signaling in bacteria. The model implies that ETR1 functions as a sensor kinase and is autophosphorylated in the absence of ethylene. The phosphoryl group is then transferred onto a histidine at the canonical phosphorylation site in AHP1. For phosphoryl group transfer both binding partners need to form a tight complex. After ethylene binding the receptor is switched to the non-phosphorylated state. This switch is accompanied by a conformational change that decreases the affinity to the phosphorylated AHP1. To test this model we used fluorescence polarization and examined how the phosphorylation status of the proteins affects formation of the suggested ETR1âAHP1 signaling complex. We have employed various mutants of ETR1 and AHP1 mimicking permanent phosphorylation or preventing phosphorylation, respectively. Our results show that phosphorylation plays an important role in complex formation as affinity is dramatically reduced when the signaling partners are either both in their non-phosphorylated form or both in their phosphorylated form. On the other hand, affinity is greatly enhanced when either protein is in the phosphorylated state and the corresponding partner in its non-phosphorylated form. Our results indicate that interaction of ETR1 and AHP1 requires that ETR1 is a dimer, as in its functional state as receptor in planta
Unambiguous Formalism for Higher-Order Lagrangian Field Theories
The aim of this paper is to propose an unambiguous intrinsic formalism for
higher-order field theories which avoids the arbitrariness in the
generalization of the conventional description of field theories, which implies
the existence of different Cartan forms and Legendre transformations. We
propose a differential-geometric setting for the dynamics of a higher-order
field theory, based on the Skinner and Rusk formalism for mechanics. This
approach incorporates aspects of both, the Lagrangian and the Hamiltonian
description, since the field equations are formulated using the Lagrangian on a
higher-order jet bundle and the canonical multisymplectic form on its dual. As
both of these objects are uniquely defined, the Skinner-Rusk approach has the
advantage that it does not suffer from the arbitrariness in conventional
descriptions. The result is that we obtain a unique and global intrinsic
version of the Euler-Lagrange equations for higher-order field theories.
Several examples illustrate our construction.Comment: 21 pages; 4 diagrams; (this version) corrected typos; moved
paragraphs; publishe
Biochars in soils : towards the required level of scientific understanding
Key priorities in biochar research for future guidance of sustainable policy development have been identified by expert assessment within the COST Action TD1107. The current level of scientific understanding (LOSU) regarding the consequences of biochar application to soil were explored. Five broad thematic areas of biochar research were addressed: soil biodiversity and ecotoxicology, soil organic matter and greenhouse gas (GHG) emissions, soil physical properties, nutrient cycles and crop production, and soil remediation. The highest future research priorities regarding biochar's effects in soils were: functional redundancy within soil microbial communities, bioavailability of biochar's contaminants to soil biota, soil organic matter stability, GHG emissions, soil formation, soil hydrology, nutrient cycling due to microbial priming as well as altered rhizosphere ecology, and soil pH buffering capacity. Methodological and other constraints to achieve the required LOSU are discussed and options for efficient progress of biochar research and sustainable application to soil are presented.Peer reviewe
Open-access quantitative MRI data of the spinal cord and reproducibility across participants, sites and manufacturers
In a companion paper by Cohen-Adad et al. we introduce the spine generic quantitative MRI protocol that provides valuable metrics for assessing spinal cord macrostructural and microstructural integrity. This protocol was used to acquire a single subject dataset across 19 centers and a multi-subject dataset across 42 centers (for a total of 260 participants), spanning the three main MRI manufacturers: GE, Philips and Siemens. Both datasets are publicly available via git-annex. Data were analysed using the Spinal Cord Toolbox to produce normative values as well as inter/intra-site and inter/intra-manufacturer statistics. Reproducibility for the spine generic protocol was high across sites and manufacturers, with an average inter-site coefficient of variation of less than 5% for all the metrics. Full documentation and results can be found at https://spine-generic.rtfd.io/. The datasets and analysis pipeline will help pave the way towards accessible and reproducible quantitative MRI in the spinal cord
- âŠ