2,025 research outputs found
Recommended from our members
The magnetic and turbulent evolution of the Taurus Molecular Cloud.
AstronomyDoctor of Philosophy (PhD
CO Abundance Variations in the Orion Molecular Cloud
Infrared stellar photometry from 2MASS and spectral line imaging observations
of 12CO and 13CO J = 1-0 line emission from the FCRAO 14m telescope are
analysed to assess the variation of the CO abundance with physical conditions
throughout the Orion A and Orion B molecular clouds. Three distinct Av regimes
are identified in which the ratio between the 13CO column density and visual
extinction changes corresponding to the photon dominated envelope, the strongly
self-shielded interior, and the cold, dense volumes of the clouds. Within the
strongly self-shielded interior of the Orion A cloud, the 13CO abundance varies
by 100% with a peak value located near regions of enhanced star formation
activity. The effect of CO depletion onto the ice mantles of dust grains is
limited to regions with AV > 10 mag and gas temperatures less than 20 K as
predicted by chemical models that consider thermal-evaporation to desorb
molecules from grain surfaces.
Values of the molecular mass of each cloud are independently derived from the
distributions of Av and 13CO column densities with a constant 13CO-to-H2
abundance over various extinction ranges. Within the strongly self-shielded
interior of the cloud (Av > 3 mag), 13CO provides a reliable tracer of H2 mass
with the exception of the cold, dense volumes where depletion is important.
However, owing to its reduced abundance, 13CO does not trace the H2 mass that
resides in the extended cloud envelope, which comprises 40-50% of the molecular
mass of each cloud. The implied CO luminosity to mass ratios, M/L_{CO}, are 3.2
and 2.9 for Orion A and Orion B respectively, which are comparable to the value
(2.9), derived from gamma-ray observations of the Orion region. Our results
emphasize the need to consider local conditions when applying CO observations
to derive H2 column densities.Comment: Accepted for publication in MNRAS. 21 pages, 14 figure
Turbulent Driving Scales in Molecular Clouds
Supersonic turbulence in molecular clouds is a dominant agent that strongly
affects the clouds' evolution and star formation activity. Turbulence may be
initiated and maintained by a number of processes, acting at a wide range of
physical scales. By examining the dynamical state of molecular clouds, it is
possible to assess the primary candidates for how the turbulent energy is
injected. The aim of this paper is to constrain the scales at which turbulence
is driven in the molecular interstellar medium, by comparing simulated
molecular spectral line observations of numerical magnetohydrodynamic (MHD)
models and molecular spectral line observations of real molecular clouds. We
use principal component analysis, applied to both models and observational
data, to extract a quantitative measure of the driving scale of turbulence. We
find that only models driven at large scales (comparable to, or exceeding, the
size of the cloud) are consistent with observations. This result applies also
to clouds with little or no internal star formation activity. Astrophysical
processes acting on large scales, including supernova-driven turbulence,
magnetorotational instability, or spiral shock forcing, are viable candidates
for the generation and maintenance of molecular cloud turbulence. Small scale
driving by sources internal to molecular clouds, such as outflows, can be
important on small scales, but cannot replicate the observed large-scale
velocity fluctuations in the molecular interstellar medium.Comment: 8 pages, 7 figures, accepted for publication in A&
Magnetostrictive Neel ordering of the spin-5/2 ladder compound BaMn2O3: distortion-induced lifting of geometrical frustration
The crystal structure and the magnetism of BaMnO have been studied by
thermodynamic and by diffraction techniques using large single crystals and
powders. BaMnO is a realization of a spin ladder as the
magnetic interaction is dominant along 180 Mn-O-Mn bonds forming the
legs and the rungs of a ladder. The temperature dependence of the magnetic
susceptibility exhibits well-defined maxima for all directions proving the
low-dimensional magnetic character in BaMnO. The susceptibility and
powder neutron diffraction data, however, show that BaMnO exhibits a
transition to antiferromagnetic order at 184 K, in spite of a full frustration
of the nearest-neighbor inter-ladder coupling in the orthorhombic
high-temperature phase. This frustration is lifted by a remarkably strong
monoclinic distortion which accompanies the magnetic transition.Comment: 9 pages, 8 figures, 2 tables; in V1 fig. 2 was included twice and
fig. 4 was missing; this has been corrected in V
The Density Variance Mach Number Relation in the Taurus Molecular Cloud
Supersonic turbulence in molecular clouds is a key agent in generating
density enhancements that may subsequently go on to form stars. The stronger
the turbulence - the higher the Mach number - the more extreme the density
fluctuations are expected to be. Numerical models predict an increase in
density variance with rms Mach number of the form: sigma^{2}_{rho/rho_{0}} =
b^{2}M^{2}, where b is a numerically-estimated parameter, and this prediction
forms the basis of a large number of analytic models of star formation. We
provide an estimate of the parameter b from 13CO J=1-0 spectral line imaging
observations and extinction mapping of the Taurus molecular cloud, using a
recently developed technique that needs information contained solely in the
projected column density field to calculate sigma^{2}_{rho/rho_{0}}. We find b
~ 0.48, which is consistent with typical numerical estimates, and is
characteristic of turbulent driving that includes a mixture of solenoidal and
compressive modes. More conservatively, we constrain b to lie in the range
0.3-0.8, depending on the influence of sub-resolution structure and the role of
diffuse atomic material in the column density budget. We also report a break in
the Taurus column density power spectrum at a scale of ~1pc, and find that the
break is associated with anisotropy in the power spectrum. The break is
observed in both 13CO and dust extinction power spectra, which, remarkably, are
effectively identical despite detailed spatial differences between the 13CO and
dust extinction maps. [ abridged ]Comment: 8 pages, 9 figures. Accepted for publication in A&
WFPC2 Observations of NGC 454: an Interacting Pair of Galaxies
We present WFPC2 images in the F450W, F606W and F814W filters of the
interacting pair of galaxies NGC 454. Our data indicate that the system is in
the early stages of interaction. A population of young star-clusters has formed
around the late component, and substantial amounts of gas have sunk into the
center of the earlier component, where it has not yet produced significant
visible star formation or nuclear activity. We have photometric evidence that
the star-clusters have strong line emission, which indicate the presence of a
substantial component of hot, massive stars which formed less than 5-10 Myrs
ago.Comment: 14 pages, 4 figures, Latex (AAS macros), ApJL in pres
Recommended from our members
Role of the Srs2-Rad51 Interaction Domain in Crossover Control in Saccharomyces cerevisiae.
Saccharomyces cerevisiae Srs2, in addition to its well-documented antirecombination activity, has been proposed to play a role in promoting synthesis-dependent strand annealing (SDSA). Here we report the identification and characterization of an SRS2 mutant with a single amino acid substitution (srs2-F891A) that specifically affects the Srs2 pro-SDSA function. This residue is located within the Srs2-Rad51 interaction domain and embedded within a protein sequence resembling a BRC repeat motif. The srs2-F891A mutation leads to a complete loss of interaction with Rad51 as measured through yeast two-hybrid analysis and a partial loss of interaction as determined through protein pull-down assays with purified Srs2, Srs2-F891A, and Rad51 proteins. Even though previous work has shown that internal deletions of the Srs2-Rad51 interaction domain block Srs2 antirecombination activity in vitro, the Srs2-F891A mutant protein, despite its weakened interaction with Rad51, exhibits no measurable defect in antirecombination activity in vitro or in vivo Surprisingly, srs2-F891A shows a robust shift from noncrossover to crossover repair products in a plasmid-based gap repair assay, but not in an ectopic physical recombination assay. Our findings suggest that the Srs2 C-terminal Rad51 interaction domain is more complex than previously thought, containing multiple interaction sites with unique effects on Srs2 activity
- …