2,025 research outputs found

    Interaction with the dirty, dangerous, and dull

    Get PDF

    CO Abundance Variations in the Orion Molecular Cloud

    Full text link
    Infrared stellar photometry from 2MASS and spectral line imaging observations of 12CO and 13CO J = 1-0 line emission from the FCRAO 14m telescope are analysed to assess the variation of the CO abundance with physical conditions throughout the Orion A and Orion B molecular clouds. Three distinct Av regimes are identified in which the ratio between the 13CO column density and visual extinction changes corresponding to the photon dominated envelope, the strongly self-shielded interior, and the cold, dense volumes of the clouds. Within the strongly self-shielded interior of the Orion A cloud, the 13CO abundance varies by 100% with a peak value located near regions of enhanced star formation activity. The effect of CO depletion onto the ice mantles of dust grains is limited to regions with AV > 10 mag and gas temperatures less than 20 K as predicted by chemical models that consider thermal-evaporation to desorb molecules from grain surfaces. Values of the molecular mass of each cloud are independently derived from the distributions of Av and 13CO column densities with a constant 13CO-to-H2 abundance over various extinction ranges. Within the strongly self-shielded interior of the cloud (Av > 3 mag), 13CO provides a reliable tracer of H2 mass with the exception of the cold, dense volumes where depletion is important. However, owing to its reduced abundance, 13CO does not trace the H2 mass that resides in the extended cloud envelope, which comprises 40-50% of the molecular mass of each cloud. The implied CO luminosity to mass ratios, M/L_{CO}, are 3.2 and 2.9 for Orion A and Orion B respectively, which are comparable to the value (2.9), derived from gamma-ray observations of the Orion region. Our results emphasize the need to consider local conditions when applying CO observations to derive H2 column densities.Comment: Accepted for publication in MNRAS. 21 pages, 14 figure

    Turbulent Driving Scales in Molecular Clouds

    Full text link
    Supersonic turbulence in molecular clouds is a dominant agent that strongly affects the clouds' evolution and star formation activity. Turbulence may be initiated and maintained by a number of processes, acting at a wide range of physical scales. By examining the dynamical state of molecular clouds, it is possible to assess the primary candidates for how the turbulent energy is injected. The aim of this paper is to constrain the scales at which turbulence is driven in the molecular interstellar medium, by comparing simulated molecular spectral line observations of numerical magnetohydrodynamic (MHD) models and molecular spectral line observations of real molecular clouds. We use principal component analysis, applied to both models and observational data, to extract a quantitative measure of the driving scale of turbulence. We find that only models driven at large scales (comparable to, or exceeding, the size of the cloud) are consistent with observations. This result applies also to clouds with little or no internal star formation activity. Astrophysical processes acting on large scales, including supernova-driven turbulence, magnetorotational instability, or spiral shock forcing, are viable candidates for the generation and maintenance of molecular cloud turbulence. Small scale driving by sources internal to molecular clouds, such as outflows, can be important on small scales, but cannot replicate the observed large-scale velocity fluctuations in the molecular interstellar medium.Comment: 8 pages, 7 figures, accepted for publication in A&

    Magnetostrictive Neel ordering of the spin-5/2 ladder compound BaMn2O3: distortion-induced lifting of geometrical frustration

    Full text link
    The crystal structure and the magnetism of BaMn2_2O3_3 have been studied by thermodynamic and by diffraction techniques using large single crystals and powders. BaMn2_2O3_3 is a realization of a S=5/2S = 5/2 spin ladder as the magnetic interaction is dominant along 180^\circ Mn-O-Mn bonds forming the legs and the rungs of a ladder. The temperature dependence of the magnetic susceptibility exhibits well-defined maxima for all directions proving the low-dimensional magnetic character in BaMn2_2O3_3. The susceptibility and powder neutron diffraction data, however, show that BaMn2_2O3_3 exhibits a transition to antiferromagnetic order at 184 K, in spite of a full frustration of the nearest-neighbor inter-ladder coupling in the orthorhombic high-temperature phase. This frustration is lifted by a remarkably strong monoclinic distortion which accompanies the magnetic transition.Comment: 9 pages, 8 figures, 2 tables; in V1 fig. 2 was included twice and fig. 4 was missing; this has been corrected in V

    The Density Variance Mach Number Relation in the Taurus Molecular Cloud

    Full text link
    Supersonic turbulence in molecular clouds is a key agent in generating density enhancements that may subsequently go on to form stars. The stronger the turbulence - the higher the Mach number - the more extreme the density fluctuations are expected to be. Numerical models predict an increase in density variance with rms Mach number of the form: sigma^{2}_{rho/rho_{0}} = b^{2}M^{2}, where b is a numerically-estimated parameter, and this prediction forms the basis of a large number of analytic models of star formation. We provide an estimate of the parameter b from 13CO J=1-0 spectral line imaging observations and extinction mapping of the Taurus molecular cloud, using a recently developed technique that needs information contained solely in the projected column density field to calculate sigma^{2}_{rho/rho_{0}}. We find b ~ 0.48, which is consistent with typical numerical estimates, and is characteristic of turbulent driving that includes a mixture of solenoidal and compressive modes. More conservatively, we constrain b to lie in the range 0.3-0.8, depending on the influence of sub-resolution structure and the role of diffuse atomic material in the column density budget. We also report a break in the Taurus column density power spectrum at a scale of ~1pc, and find that the break is associated with anisotropy in the power spectrum. The break is observed in both 13CO and dust extinction power spectra, which, remarkably, are effectively identical despite detailed spatial differences between the 13CO and dust extinction maps. [ abridged ]Comment: 8 pages, 9 figures. Accepted for publication in A&

    WFPC2 Observations of NGC 454: an Interacting Pair of Galaxies

    Get PDF
    We present WFPC2 images in the F450W, F606W and F814W filters of the interacting pair of galaxies NGC 454. Our data indicate that the system is in the early stages of interaction. A population of young star-clusters has formed around the late component, and substantial amounts of gas have sunk into the center of the earlier component, where it has not yet produced significant visible star formation or nuclear activity. We have photometric evidence that the star-clusters have strong line emission, which indicate the presence of a substantial component of hot, massive stars which formed less than 5-10 Myrs ago.Comment: 14 pages, 4 figures, Latex (AAS macros), ApJL in pres
    corecore