Supersonic turbulence in molecular clouds is a dominant agent that strongly
affects the clouds' evolution and star formation activity. Turbulence may be
initiated and maintained by a number of processes, acting at a wide range of
physical scales. By examining the dynamical state of molecular clouds, it is
possible to assess the primary candidates for how the turbulent energy is
injected. The aim of this paper is to constrain the scales at which turbulence
is driven in the molecular interstellar medium, by comparing simulated
molecular spectral line observations of numerical magnetohydrodynamic (MHD)
models and molecular spectral line observations of real molecular clouds. We
use principal component analysis, applied to both models and observational
data, to extract a quantitative measure of the driving scale of turbulence. We
find that only models driven at large scales (comparable to, or exceeding, the
size of the cloud) are consistent with observations. This result applies also
to clouds with little or no internal star formation activity. Astrophysical
processes acting on large scales, including supernova-driven turbulence,
magnetorotational instability, or spiral shock forcing, are viable candidates
for the generation and maintenance of molecular cloud turbulence. Small scale
driving by sources internal to molecular clouds, such as outflows, can be
important on small scales, but cannot replicate the observed large-scale
velocity fluctuations in the molecular interstellar medium.Comment: 8 pages, 7 figures, accepted for publication in A&