199 research outputs found

    Nematode assemblages in a nature reserve with historical pollution

    Get PDF
    Nematodes, and especially nematode communities, have significant potential as bio-indicators. The present studyaimed to assess the nematode community structure of several sites with different historical pollution. Long-term polluted municipal waste-, tar- and sludge- sites were compared with less disturbed annex sites. At each site heavy metal and PAHs concentrations were measured together with soil texture classes, pH and total organic matter. Identification of three hundred nematodes at each location resulted in the discrimination of 63 genera from 32 different families of which the Cephalobidae, Belonolaimidae, Tylenchidae, Hoplolaimidae, Belonolaimidae and Plectidae were the most abundant families. The sampling sites harbour significantly different nematode communities and significant differences of life-strategy-related parameters (cp-groups, MI indexes) wereobserved. The significant augmentation of the proportion of the cp 2 nematodes in historically-polluted sites was especially informative. Omitting the cp 1 group from the MI (=MI2-5) better reflects putative historical pollution-induced community changes. However, the current study did not reveal significant relationships between historical pollution and the feeding type composition, or the Shannon-Wiener diversity. The observed results are critically assessed in the light of possible flaws such as sampling and analyzing limitations

    Organism-sediment interactions govern post-hypoxia recovery of ecosystem functioning

    Get PDF
    Hypoxia represents one of the major causes of biodiversity and ecosystem functioning loss for coastal waters. Since eutrophication-induced hypoxic events are becoming increasingly frequent and intense, understanding the response of ecosystems to hypoxia is of primary importance to understand and predict the stability of ecosystem functioning. Such ecological stability may greatly depend on the recovery patterns of communities and the return time of the system properties associated to these patterns. Here, we have examined how the reassembly of a benthic community contributed to the recovery of ecosystem functioning following experimentally-induced hypoxia in a tidal flat. We demonstrate that organism-sediment interactions that depend on organism size and relate to mobility traits and sediment reworking capacities are generally more important than recovering species richness to set the return time of the measured sediment processes and properties. Specifically, increasing macrofauna bioturbation potential during community reassembly significantly contributed to the recovery of sediment processes and properties such as denitrification, bedload sediment transport, primary production and deep pore water ammonium concentration. Such bioturbation potential was due to the replacement of the small-sized organisms that recolonised at early stages by large-sized bioturbating organisms, which had a disproportionately stronger influence on sediment. This study suggests that the complete recovery of organism-sediment interactions is a necessary condition for ecosystem functioning recovery, and that such process requires long periods after disturbance due to the slow growth of juveniles into adult stages involved in these interactions. Consequently, repeated episodes of disturbance at intervals smaller than the time needed for the system to fully recover organism-sediment interactions may greatly impair the resilience of ecosystem functioning.

    A dataset of criteria on the use of thermal insulation solutions in building facades located in Norway, Portugal and Italy

    Get PDF
    The building sector is responsible for a significant percentage of the energy consumption in Europe. The level of thermal insulation of the building envelope leads to decrease energy consumption, thus contributing towards a sustainable and efficient built environment. As a result, the choice of the most suitable thermal insulation solution to be applied both in new construction and in retrofitting of building facades is fundamental for a satisfactory thermal performance of the building. Nevertheless, the thermal insulation solution should not be chosen considering only the thermal performance, but rather based on a set of performance parameters (i.e., water resistance, fire performance, impact on the environment and human health, among others) and climate-related requirements. This data article includes a dataset on criteria adopted in three European countries (namely Norway, Portugal, and Italy) considering a PESTE analysis (i.e., criteria related to Political, Economic, Social, Technological, and Environmental questions). The main objective was to evaluate the knowledge and perception of people living and/or working in these countries about the use and the performance of thermal insulation solutions in building facades. To this aim a questionnaire was developed within the scope of the EEA Granted EFFICACY research project (November 2022 – February 2023), whose overall objective is to create a database that serves as a reference for the choice of thermal insulation solutions to be applied in building facades for thermal and energy performances optimization. This database contributes to systemize criteria and can be extended by other researchers or professionals in the area, as well as in other countries

    Durability assessment of external thermal insulation composite systems in urban and maritime environments

    Get PDF
    Funding Information: The authors acknowledge the Portuguese Foundation for Science and Technology (FCT) for funding the research project PTDC/ECI-EGC/30681/2017 (WGB_Shield – Shielding building facades for cities revitalization. Triple resistance to water, graffiti and biocolonization of external thermal insulation systems), the research units CERIS ( UIDB/04625/2020 ), CERENA ( UIDB/04028/2020 ) and iBB ( UIDP/04565/2020 ), the Associate Laboratory Institute for Health and Bioeconomy – i4HB ( LA/P/0140/2020 ), and the Ph.D. scholarship 2020.05180.BD (J. L. Parracha). The authors also acknowledge CIN, Saint-Gobain and Secil for the material supply and the Portuguese Institute for Sea and Atmosphere (IPMA) for the meteorological data. Funding Information: The authors acknowledge the Portuguese Foundation for Science and Technology (FCT) for funding the research project PTDC/ECI-EGC/30681/2017 (WGB_Shield – Shielding building facades for cities revitalization. Triple resistance to water, graffiti and biocolonization of external thermal insulation systems), the research units CERIS (UIDB/04625/2020), CERENA (UIDB/04028/2020) and iBB (UIDP/04565/2020), the Associate Laboratory Institute for Health and Bioeconomy – i4HB (LA/P/0140/2020), and the Ph.D. scholarship 2020.05180.BD (J. L. Parracha). The authors also acknowledge CIN, Saint-Gobain and Secil for the material supply and the Portuguese Institute for Sea and Atmosphere (IPMA) for the meteorological data. Publisher Copyright: © 2022 Elsevier B.V.External Thermal Insulation Composite Systems (ETICS) are multilayer solutions which provide an enhanced thermal performance to the building envelope. However, significant anomalies can be detected on ETICS facades, in some cases shortly after the application of these systems. This study intends to evaluate and compare the durability of six commercially available ETICS after two years of outdoor exposure at both urban and maritime conditions in Portugal. The systems were characterized by means of non-destructive testing (i.e., visual and microscopic assessment, water transport properties, thermal conductivity, surface roughness), thus allowing to evaluate the performance loss throughout natural aging. The bio-susceptibility and aesthetic properties (color and gloss) were also investigated. Results showed that the performance and durability of the complete system is significantly affected by the rendering system formulation. The lime-based specimens obtained the highest rate of mold development after one year of aging in a maritime environment, becoming considerably darker and with lower surface gloss. Fungal analysis of this darkish stained area indicated the presence of mold species of the genera Alternaria, Didymella, Cladosporium and Epicoccum, and yeasts of the genera Vishniacozyma and Cystobasidium. An increase of both capillary water absorption and water vapor permeability was also registered for the aged lime-based specimens. Acrylic-based systems obtained lower capillary water absorption after aging and greater dirt deposition on their surfaces, especially in urban conditions. These systems had also higher color variation and surface gloss decrease and slightly higher mold growth, when compared with those aged in a maritime environment. Finally, no mold growth was detected on the silicate-based specimens after two years of aging. However, these specimens obtained higher capillary water absorption and lower vapor permeability after aging, possibly leading to moisture accumulation within the system. Results contribute towards the development of ETICS with enhanced performance and durability.publishersversionpublishe

    Characterizations of how species mediate ecosystem properties require more comprehensive functional effect descriptors

    Get PDF
    The importance of individual species in mediating ecosystem process and functioning is generally accepted, but categorical descriptors that summarize species-specific contributions to ecosystems tend to reference a limited number of biological traits and underestimate the importance of how organisms interact with their environment. Here, we show how three functionally contrasting sediment-dwelling marine invertebrates affect fluid and particle transport - important processes in mediating nutrient cycling - and use high-resolution reconstructions of burrow geometry to determine the extent and nature of biogenic modification. We find that individual functional effect descriptors fall short of being able to adequately characterize how species mediate the stocks and flows of important ecosystem properties and that, in contrary to common practice and understanding, they are not substitutable with one another because they emphasize different aspects of species activity and behavior. When information derived from these metrics is combined with knowledge of how species behave and modify their environment, however, detailed mechanistic information emerges that increases the likelihood that a species functional standing will be appropriately summarized. Our study provides evidence that more comprehensive functional effect descriptors are required if they are to be of value to those tasked with projecting how altered biodiversity will influence future ecosystems

    Sampling, separation, and quantification of N-acyl homoserine lactones from marine intertidal sediments

    Get PDF
    N-acyl homoserine lactones (AHLs) are molecules produced by many Gram-negative bacteria as mediators of cell-cell signaling in a mechanism known as quorum sensing (QS). QS is widespread in marine bacteria regulating diverse processes, such as virulence or excretion of polymers that mediate biofilm formation. Associated eukaryotes, such as microalgae, respond to these cues as well, leading to an intricate signaling network. To date, only very few studies attempted to measure AHL concentrations in phototrophic microbial communities, which are hot spots for bacteria-bacteria as well as microalgae-bacteria interactions. AHL quantification in environmental samples is challenging and requires a robust and reproducible sampling strategy. However, knowing about AHL concentrations opens up multiple perspectives from answering fundamental ecological questions to deriving guidelines for manipulation and control of biofilms. Here, we present a method for sampling and AHL identification and quantification from marine intertidal sediments. The use of contact cores for sediment sampling ensures reproducible sample surface area and volume at each location. Flash-freezing of the samples with liquid nitrogen prevents enzymatic AHL degradation between sampling and extraction. After solvent extraction, samples were analyzed with an ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) method that allows to baseline-separate 16 different AHLs in less than 10 min. The sensitivity of the method is sufficient for detection and quantification of AHLs in environmental samples of less than 16 cm(3)

    Zeolite structures loading with an anticancer compound as drug delivery systems

    Get PDF
    The authors are thankful to Dr. A. S. Azevedo for collecting the powder diffraction data.Two different structures of zeolites, faujasite (FAU) and Linde type A (LTA), were studied to investigate their suitability for drug delivery systems (DDS). The zeolites in the sodium form (NaY and NaA) were used as hosts for encapsulation of α-cyano-4- hydroxycinnamic acid (CHC). CHC, an experimental anticancer drug, was encapsulated in both zeolites by diffusion in liquid phase. These new drug delivery systems, CHC@zeolite, were characterized by spectroscopic techniques (FTIR, 1H NMR, 13C and 27Al solidstate MAS NMR, and UV−vis), chemical analysis, powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effect of the zeolites and CHC@zeolite drug deliveries on HCT-15 human colon carcinoma cell line viability was evaluated. Both zeolites alone revealed no toxicity to HCT-15 cancer cells. Importantly, CHC@zeolite exhibit an inhibition of cell viability up to 585-fold, when compared to the non-encapsulated drug. These results indicate the potential of the zeolites for drug loading and delivery into cancer cells to induce cell deathO.M. and R.A. are recipients of fellowships (SFRH/BD/36463/2007, SFRH/BI/51118/2010) from Fundação para a Ciência e a Tecnologia (FCT, Portugal). This work was supported by the FCT projects refs PEst-C/ QUI/UI0686/2011, PEst-C/CTM/LA0011/2011, and PTDC/ SAU-FCF/104347/2008, under the scope of “Programa Operacional Temático Factores de Competitividade” (COMPETE) of “Quadro Comunitário de Apoio III” and cofinanced by Fundo Comunitário Europeu FEDER, and the Centre of Chemistry and Life and Health Sciences Research Institute (University of Minho, Portugal)
    corecore